
The Working

Dragon32

The Working

Dragon32
A library of practical

subroutines and programs

David Lawrence

First published I 983 by:
Sunshine Books Ltd.,
Hobhouse Court,
19 Whitcomb Street,
London WC2 ?HF

Copyright © David Lawrence
ISBN 0 946408 01 7

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording and/or
otherwise, without the prior written permission of the Publishers.

Cover designed by Three's Company.
Photograph of the Dragon 32 kindly supplied by Dragon Data Ltd.
Typeset and printed in England by Commercial Colour Press,
London E7.

2

CONTENTS

Enter the Dragon
Page

7

Storing and Searching
Unifilel 9
Unifi/ell 22

2 Managing your money
Banker 31
Accountant 38
Budget 46

3 Drawing on the Dragon
Artist 61
Doodle 70
Tangrams 74
Designer 80

4 Easy Education
Mu/tiQ 88
Words 95
Where? 100

5 High Resolution Text
Characters 105
Dictionary 119

6 Handy programs
Name and number 121
Typist 126
Texted 128
Music 134
Graph 141

7 Fun and games
Tracker 147
Headlong 151
Quoits 153

Postword 158

3

Contents in detail

CHAPTER I
Storing and searching
I. I Uni file I - this is a flexible program which allows you to store up to
500entries with a regular structure of items such as name , address etc. You
can search for named items, amend or delete entries and recall them
quickly and easily.
1.2 Uni file I I - this program is designed to cope with less structured files.
You can conduct a multiple search, and amend, delete or insert new items.

CHAPTER2

Managing your money
2.1 Banker - this program allows you to keep your financial records in
much the same form as your bank statement. We also make use of our first
multi-statement lines.
2.2 Accountant - this simple program helps you display your accounts
clearly and easily.
2.3 Budget - a powerful tool which lets you plan your finances over a 12
month period.

CHAPTER3

Drawing on the Dragon
3. I Artist - this makes use of the Dragon's excellent graphics capabilities
to draw multi-coloured pictures.
3.2 Doodle - with your joysticks.
3.3 Tangrams - this program introduces the useful ORA W command to
build up the shapes in this ancient Chinese game.
3.4 Designer - allows you to define a design of up to 10,000*I 0,000
pixels, examine it at various scales and rotate all or part of it on the screen.

CHAPTER4

Easy Education
4.1 MultiQ - this program enables you to input a series of questions and
answers which form the basis for multiple choice tests.
4.2 Words- here the questions take the form of simple pictures. Based on
the Artist program it could serve as a reading tutor with a potential
vocabulary of 100 words.
4.3 Where? - this uncomplicated program tests your knowledge of
geography.

5

The Working Dragon

CHAPTERS

High resolution text
5.1 Characters- this chapter looks at the problem of mixing text and high
resolution graphics on the screen at the same time. The program enables
you to build up any character capable of being fitted into an area on the
screen of 32*32 pixels.
5.2 Dictionary - allows you to store up to 100 of your newly created

characters at one time so as to provide material for high resolution
programs which require text.

CHAPTER6

Handy programs
6.1 Name and number- a general purpose tool to build up a dictionary of
items and their related quantities, for example, in counting your calories.
6.2 Typist - not every program needs to be hundreds of lines long. This
one helps you to learn to touch type.
6.3 Texted - a useful word·processing package.
6.4 Music - this introduces the Help function and makes use of the
PLAY command to edit music.
6.5 Graph - this program enables the user to draw line graphs of a variety
of data, specifying the units and the set·UP of the axes.

CHAPTER 7

Fun and games
7 .1 Tracker - an infuriating game in which you hunt an invisible quarry.
7 .2 Headlong - almost impossible to win, this is a fast skilful game based
on the Doodle program.
7 .3 Quoits - how fine is your judgment?

6

Enter the Dragon

This book, and the series of which it forms a part, was undertaken to

try and fill a huge gap. That gap was the absence of works aimed at

fulfilling the new micro- owner's dream that his or her machine will not

simply be a toy, nor even an educational introduction to the silicon age,

but a powerful tool, taking over all kinds of tasks and opening up all

kinds of possibilities. The majority of books consist either of trivia or

assume too great a desire - perhaps even the capacity - to

experiment.

I wanted to write a book based on a solid collection of programs in

such areas as data storage, finance, graphics, music, household

management and education. Discussion of programming techniques
would arise out of the programs themselves rather than as part of a

curriculum of 'things that should be learned'. I hope that you will find

that the book that has emerged from that desire is a useful one, not

only as a way of learning new programming techniques but also as a

collection of programs in itself, offering a wide range of applications

that might otherwise have been open only to those prepared to buy

expensive commercial software or able to write substantial programs

themselves early on in their programming experience.

In addition to the programs there are the parts of the programs -

not as silly as it sounds, for all the programs in this book are written in

'modular' form. That is to say that they are made up of clearly

identifiable functional units which, as you come to understand them,

you will be able to lift out and employ for your own purposes.

Each module is fully commented upon where it covers new ground

and instructions are given for the testing of programs at each stage of

their entry.

In using this book you will find that, though there are sections where

general issues are discussed, it is not a book to be read but to be used.

The relevance of comments and advice will often only be apparent

when you have taken the plunge and begun the task of entering what

appear at first to be dauntingly long and complex programs. Here the

modular approach will help to prevent programs becoming

unredeemable tangles of errors, so do take the tests suggested seriously.

7

The Working Dragon

In the end, however, the success of failure of this book must be judged
on whether it helps you to enjoy your Dragon. Whilst the structure of this
book is closely modelled on my earlier book, The Working Spectrum, the
programs have been revised extensively in the light of the Dragon's very
different capabilities. I have enjoyed the writing of these programs -
enjoyed the sensation that has come very often in the writing of this book
that the Dragon has produced better programs for me than other micros I
have worked with. It is an idiosyncratic machine, sometimes a downright
irritating one but its capabilties go far beyond many others and, I suspect,
far beyond the realisation of many of its owners.

Notes on style

I) Because multi-statement lines are difficult to debug, the early programs
in this book, by and large, avoid their use. If you feel confident of your
own ability there is no reason why you should not merge lines. This does
mean that extra care should be taken in testing modules.
2) I have adopted no short cuts when it comes to spelling out Basic
statements. You may well wish to omit LETs from statement lines or
replace PRINT with ? .
3) The printer o n which these programs were listed has replaced all
occurrences of #with£, a fact of which you will need to be aware.

PROGRAM NOTES

There are two points to note with the listings:
1) The If symbol is always represented by£.
2) The 1 symbol is always represented by�
3) Inverse characters appear in the program printouts in lower case.

8

CHAPTER 1

Storing and Searching

1.1 UNIFILE I
Sooner or later, most micro owners realize that their new digital friend
really comes into its own when it is storing information, processing it and
presenting it in ways that would be laborious in the extreme if done
manually. They then begin the task of writing simple programs which will
store their friends' names and addresses or catalogue their stamp albums.
They may end up with half a dozen programs, each limited to one use but
each working on much the same method.

In this opening chapter we jump in at the deep end and examine how a
single program can be written to satisfy a wide variety of different filing
tasks, without the need for constant rewriting every time a new application
comes along.

The program is called Uni file and it is capable of flexibly swring up to
500 entries, as well as allowing the user to search through them for named
items, to change entries and to delete them. Quite apart from the wide
applications of the program, however, in building it up we shall learn a
great deal about the Dragon's considerable abilities as a working member
of the family.

MODULE I.I.I
1 GOTO 3
:2 CSAVE 0'1JNJ:FJ:LE" • SOUND 1 � 1 • STOP
3 REt-1

I think it's worth mentioning that all of my programs begin with these three
lines (though obviously the program name changes). Typing GOT02 is a
great deal easier than spelling out the program name every time and a lot
less prone to error. The result is that you will be more likely to save the
program on tape regularly as you build it up and the result of that will be to
save you a lot of frustration when you one day accidentally lose the last two
hours hard work as a result of mishap or stupidity. Always enter these three
lines first and then save the program regularly as you enter it.

MODULE 1. 1.2
1000 REM*************************
1010 REM MENIJ
1020 REM*************************

9

The Working Dragon

1030 CLS•PRINT � 9,STRING•<9,140>
1040 PRINT Oii! 41,CHR•< 128>-+-"UNJ:FILE"+CHF.!:•
< 128 >
10�0 PRINT � 73,STRING•<9,131>
1060 PRINT PRINT "COMMANDS AVAILABLE,"
�070 PRINT• PRINT " 1 >SET UP NEL-J FILE

10'90 PR:INT " 2>ENTER l:NF='ORMRTION"
j_090 PRINT •• 3>SERRCH..-'DISPLRY,..-CHRNGE"
1100 PRINT " 4>DRTA FILES"
1110 PRINT " �>STOP
1120 PRINT• INPUT "l.JHICH DO YOU !i-:EQUIRE•
"; z
1130 CLS
1140 ON Z GOSue 1�00,2000,8�00,6000,1170
11.60 GOTO 1000
1170 PRINT � 260,STRING•<:22,140>
1180 PRINT � 292.• CHR:•< 128 >+"FILING SYSTE
M CLOSED"-+CHR$0::: 1.28 >
1190 PRiNT � 324,STRING*<22,131>
1200 El-40

As a rule of thumb, a utility program that does not commence with a fairly
clear- cut menu of what the program does is a bad program. And if you
don't agree with that statement now, you certainly will at some time when
you have to return to a complex but useful program which has not been
used for some weeks and find that you have to spend hours going through
the listing trying to remind yourself of what it does and how.

In this module, which is common to many of the programs in this book,
the user is asked to choose between five numbered functions. If a number
outside the range 1-5 is input, it is ignored.

Commentary
Lines 1000-1020: All of the program modules in this book are labelled in
this way. Normally the modules so headed are subroutines but even where
they are not, they represent a clear-cut program function.

Lines 1030-1050: An uncomplicated way of dressing up the titles used in
the process of the program. STRING$ simply prints a line of the same
character, the line being as long as the first figure in the parentheses. The
second figure is the ASCII code of one of the graphics characters referred
to in Appendix A of the Dragon manual. These characters can be printed
on the screen but not displayed in a program line since there is no key on the
keyboard which will access them.

Line 1140: An economical and time-saving way of choosing between the
different destinations. Without the ON .. . GOSUB we should be looking
at a series of five IF . . THEN .. GOTOs. The destination chosen by this line
will the Zth, based on the user's input.

Line 1160: Although lines 1000-1020 serve no useful purpose, lines which
return the program to the beginning of this or any other module should
always point to these first, decorative lines since you may, at some stage

10

Chaprer 1 Storing and Searching

want to add another line before the present first, functional line at 1030,
necessitating changes to any lines which took 1030 as the start of the
module.

Lines ltl?0- 1 200: These lines are not strictly necessary but they neatly
terminate the use of the program.

Testing Module I. /.2

At this stage, all that can be tested is that the module presents a neatly
ordered menu page and accepts an input. Inputs in the range 1 -4 should
result in an undefined line error report. Input of 5 should terminate the
program. Any other input should be ignored.

MODULE 1 . 1 .3

4000401.0402040�0404040�0
:��:

REM************************REM FUNCTI ONAL SUBROUT I NES REM��**��******************L I NE I NPUT Gl!• LET Q,_-1;1•+ ••-.• • RETURt--1 LET ST- t NSTPr ST+t. . B•< B > · ·· - •• > F':ETUPN

When a function, whether complex or simple, needs to be carried out
several times and in several places during the course of the execution of a
program, it is worth considering either defining a user-defined function,
which will be discussed later, or inserting a short subroutine which will do
the job. These two short subroutines need to be entered early on since they
are called up fairly frequently by other modules but the explanation of
their functions will be left until they are actually used.

MODULE 1.1.4
1. �00 REM************************1 � 1 0 REM ENTRY STRUCTURE 1 �20 REM************************1 �30 PCLEAR 1 • CLEAR 20000 1 �40 PR I NT � e � STRI NG$< 1 6 � 1 28 > 1 !5�0 PR I MT � 40� CHR•< 1.28 > + '• F t LE STRUCTURE " +CHR.W< 1 2'::" > 1 !560 PR I NT � 72� STR I MG•< t.� � 1 20 > 1 �70 PRI NT I NPUT ''HOW MANY I TEMS 1 N EACHENTRY • •• , X CLS 1 !580 D I M A•< >-:- 1 > 1 !590 PP. I NT � 9 .. "n�. t<,-e� ·· , CHR•< 1 20 > .• " ,:;,,#'" " , CH RS< 1. ze > , ·· 1 -te-rv,s• • 1 600 FOR t -0 TO X- 1 1 "5 1 0 PR I NT " I TEM ., > 1 + 1 ., • • • •• ., 1 620 I NPUT A•< I > 1 630 NE>-:T I 1 640 D I M Et�<: 499 > 1 6!50 LET B,_< 0 >-CHP:!!11('. 0 ::,-. . . 1 660 B�< 1 >-CHR""< 2�!5 ::>+" .-. " 1 670 N-2 1 "580 GOTO 1 ,e,00

The purpose of this module is to provide Uni file with its chameleon-like
properties by allowing the user to specify the kind of file to be set up, and
the names of the items that a typical entry will contain.

1 1

The Working Dragon

Commentary

Line 1530: PCLEAR l is an important instruction in programs such as this
one, which require as much memory as possible for maximum usefulness.
When you switch your Dragon on it automatically reserves roughly 6,000
memory locations for use with graphics. Since we shall not be using
graphics in a data-handling program like this one we can reduce the
amount of memory given over to the display. All we actually need is one
'page' or screenful of memory on which to display the program's printed
output. This makes available an extra 4,500 memory locations - a
considerable addition. The other command on this line sets aside 20,000
memory locations specifically for our filing use, otherwise we would
quickly run out of space.

Lines 1570- 1630: In this section the user is requested to input the number
of items which a typical entry will contain, and then to give each item a
name, such as 'name, address, etc. ' . An array called A$ is set up, with as
many elements as there will be items per entry. Note that although the user
specifies X items, the array A$ is set up with apparently only X-1 elements
in it. This is because in the version of the Basic language which the Dragon
uses, all such arrays actually start with element number zero. You can
ignore the zero element in your programming, which does make the
numbering of things more sensible, but then again it wastes space. It's sad
that a modern machine such as the Dragon has to be tied to such an
outdated convention.

Line 1640: Our file will be held in the array 8$, which has 499 + 1 elements.
One limitation of this will be that the total number of characters in any one
entry will not be able to exceed 255 and the program will have to be made to
ensure that this does not happen in error.

Lines 1650- 1660: The file will be arranged in alphabetical order of the first
item in each entry. The method we shall use to insert new entries into the
file in their correct position requires that there be some entries there
already, to compare the new entry with. So rather than start with an empty
file we insert a pair of dummy entries. The actual entries are the single
characters CHR$(0) and CHR$(255). Neither of them actually mean
anything, they are simply the A and Z of the Dragon's alphabet and any
subsequent entry which begins with a normal text character will
automatically be inserted between them.

Line 1670: The variable N records the number of entries in the file. Because
of the eccentric numbering of the arrays, N will seldom if ever be used on its
own, but usually as N-1 or N-2.

12

l-11aµ,.::, , "'"'"'II .. ,,.,. vu-,_, , . , ."'

Line 168 0: Subroutines end with the RETURN command, returning
program execution to the line which called the subroutine up in the first
place. The difference here is that during the course of this module we
cleared the memory, and this led to the loss of the return address of the line
which called the subroutine. Hence in this particular case we need to
specify the return address.

Testing Module 1 .1 .4
You should now be able to RUN the program and call up the first function
on the menu. You should be requested to specify the number of items in
each entry and then to name the type of item. Having named the requisite
number of items you should be returned to the menu. You may wish to
check, in direct mode, that the names of the items are stored in the first X- 1
places of the array A$.

MODULE 1.1.5
2000 REM************************
21?1 1. 0 REM NORMAL INPUT
2020 REM************************
:2:0�0 LET R!tl- " "
2040 PRINT � 1. 0,STRING-(9 , 1. 40 �
20"!50 PRIMT IJ!' 42 _• CHR•< 1. 28 '.:>-+-" ENTRIES" -+-CHR-•
< 1 28 :,
20�0 PRI�1T � 74 . STR :I NG•< � , 1 3 1 ::0
2070 PR 'INT "COMMANDS A V F=l l: LA9LE • "
2090 PRINT " >ENTER ITEM S:F'ECIF J: ED "• PRINT

" > · zzz · TO RETURN TO MENU "
:2:090 PRINT STRING•<32,'' * '' '.:> J
2100 PRINT "NI..JM8ER O F :ITEMS • " : N- 2 • " /!!500"
2 1 1 0 �OR J: -0 TO X - 1.
2 1. 20 PRIMT R$< J: :, _, " • " -'
z 1 :30 c;os1_re 4030
2 1 �0 I� LEN < R• >-+-LEN (QS ::0 >2�� THEN PRINT

" ENTF<!V TOO LONG. " • FOR .J- 1. TO "!5000 • NEXT
_1 , P.ETURN
:21'50 IF 01'1- "ZZZ� " THEN RETIJRN
:2170 LET R•-R•-+-QS
2 1. 80 NEXT I
:2 1 90 CLS
2200 GOSI • .IB 2�00
:22 1 0 GOTO 2000

The purpose of this module is to accept the input of a new entry composed
of the correct number of items specified in the last module and to present
the new entry to the section of the program which will insert it into its
correct place in the file.

Commentary
Line 2030: R$ is the string in which the entry will be built up before being
placed in the main file.

Line 2 130: Items for input are all accepted by the short subroutine (already
entered) at 4 03 0. All this does is to add the character f to the end of each
item. This symbol will later be used to redivide the entry into its constituent
items. This means that the character f is a reserved symbol as far as this

1 3

1 1 / C ••utr.111!,J LJIO!,JUII

program is concerned, and if you include it in an item then you are likely to
get a nonsense result from that particular entry.

Line 2150: Having accepted an item, the length of the entry is checked to
see that it will nm exceed the maximum length imposed by the Dragon of
255 characters for a single string.

Line 2160: At any point in the process of inputting an entry, the user can
type ZZZ as an item and the program will return to the menu.

Line 2170: Provided that the entry is not too long and the user has 001 input
ZZZ, the item just input, with its added T character, is added to R$ which is
being built up into the completed entry.

Line 2 200 : The module which inserts the completed entry into the main file
is now summoned up.

Testing Module 1 .1 .5
Though items cannot be inserted into the actual file, you should now be
able to call up the first function on the menu, specify item names then call
up this module and input items under your named headings. Putting a
temporary line 2500 RETURN should enable you to go on doing it
indefinitely. You should check that the module does not accept entries
whose overall length is greater than 255 characters.

MODULE 1.1. 6
2!!500 2!!5 1 0 :2!520;2!5'.30 ��!54-121

REM** .. *********************

:��*=�:�:*�:::*!.�*:.!��***** IF N<!500 THEN COTO 2!560 CLS • PR J NT f!!' 1 4'$:�2- 1 0 ., " F I LE t�O�·J
:2��0 FOR I - 1 TO 1 000 • NEXT I • RETURN :2�61211 LET POHER-J: NT < LOG<' N-1 >_,...LOG< :2: ":> > 2�70 LET S-2--POL�ER: 2�00 LET T .. -LEFT9< R• .• I NSTR:< R• .. " -. " >- 1 > 2�90 FOR K-PO�IER- 1 TO 0 STEP - 1 2600 LET ST- 1 , cosue 4060 • LET u•-LEFT9< B• < S > ., ST- 1. > 26 1 0 IF T9>U• THEN LET s-s-2-K2620 J:F T•<u• THEN LET s-s-2--K :2630 I F S>N-1 THEN LET S-N- 1 2G40 IF S< 1 THEN LET S-1 ze:�e NEXT K z,e::,e::121 LET ST- 1 • GOSUB 406el • LET u•-LEFT*< B•<:: S > , ST- 1 ::, 2670 XF T•<u� THEN LET s-s-1 2680 FOR I -N- 1 TO I NT� S+2 > 5TEP-126�0 LET e•r x �-e•< I - 1 > ::2700 NEXT t 27 1 0 LET B�< S+1 >-R$ 2720 LET N-N-1 27�0 RETUPN

Probably the most complex module in the program. The purpose of this
module is to determine the correct place for a new entry in the file. To
understand its functions you must first of all understand the technique of

14

Chapter 1 Storing and Searching

the 'binary search' which is used to dramatically reduce the number of
comparisons between entries that have to be made before the correct
position is determined. Consider the following example:

We have established a file containing 2,000 entries {not in this program,
but never mind) and there is a new entry which needs to be inserted at
position 173 1 , though the program has yet to determine this. The program
begins its search by looking at the first entry in the file and comparing it
with the new entry. The new entry is found to be the greater of the two
alphabetically and so the program proceeds to examine the next entry in the
file and so on for I, 731 comparisons until the correct place is found. This is
a straightforward procedure and an easy one to program. Compare it with
this:

The program begins by examining the entry in position 1024 in the file,
since 1024 is the greatest power of 2 which is less than the total number of
entries in the file. Entry 1024 is found to be alphabetically less than the new
entry and so the program adds 1024/2 to the original I 024 and moves on to
entry number 1536. The entry at 1536 is still less than the new entry and so
1024/4 is added lO 1 536, making 1792. Entry number 1792 is greater than
the new entry and so 1024/8 is subtracted from 1792 giving 1664. The
search proceeds at the following locations in the file and with the following
additions or subtractions:
1644 (then add 64)
1728 (then add 32)
1 760 (then subtract 16)
1 744 (then subtract 8)
1736 (then subtract 4)
1732 (then subtract 2)
1730 (then add I)
Final result 173 I .

The power of a binary search should be apparent.

Commentary

Lines2530-2550: A check is made to determine that there is in fact room in
the file for another entry.

Line 2560: This line determines the largest power of two that is less than the
total length of the file (including the zero element).

Line 2580: Using the powerful INSTR function, which scans a specified
string for any combination of characters named, we find the first l in the
new entry and take everything to the left of that as the first item in the
entry, T$.

15

I he Workmg Uragon

Lines 2590-2650: This loop, using decreasing powers of 2 to add and
subtract from the number of the search location, moves through the file
carrying out the type of binary search described above.

Line 2600: This line calls up the one line subroutine at line 4060. The
purpose of that subroutine is to search for the first occurrence of the
character T in whichever entry in 8$ is pointed to by the search variable S.
The search begins at character ST, which in this case is set at I. The
resulting figure is used in line 2600to identify the first item of the particular
entry in 8$.

Lines 2630-2640: If the search moves beyond the confines of the file it is
shunted back in.

Lines 2660-2670: At the end of the search the file entry next to which the
new entry must be placed has been identified. These two lines are needed to
see whether the new entry should go before or after the existing one.

Lines 2680-2710: The new entry is inserted into the file by the simple
method of moving everything above its intended position up one place.
Other versions of Unifile for other popular micros have avoided such a
solution as being too slow, leading to complex methods of recording the
correct position of each entry in the file. In the case of the Dragon, the
speed of the machine meant that, even with a fairly full file the wait
involved in shifting all the elements one place is such that it is not worth
wasting the extra program space on more complicated solutions. Were the
Dragon to be mass marketed with a 64K memory, permitting a practical
file of more than 1 ,000 items easily, then you might want to look again at
that decision. If you happen to like complexity for the sake of it, I would
ref er you to the method described in the same ch.ipter of the previous book
in this series, The Working Spectrum.

Testing Module I./ .6

You should now be in a position, having set up your file, to enter some
items and see them correctly inserted into the main file. Since you have not
yet entered the module which displays the file, this can only be checked in
direct mode by first entering one or two items and then printing out
B$(1),B$(2) etc. If the module is misbehaving, work through the procedure
(as you have entered it, not as it is in the book) with paper and a pencil, for
the entries you have made. Such a technique is almost always the best way
of debugging a complex module such as this. 'S starts as 2 and 8$(2) would
be ' may seem like a laborious method but it reduces thecomplexityto
a manageable level.

16

Chapter 1 Storing and Searching

MODULE 1. 1.7
3�00 REM************************
3!5 1 0 REM SEARCH
3�20 REM************************
3!530 LET S 1 - 1
3!540 PP. T NT � 1 1 ,ST R: J: N G•c e,140>
3!5':'.5ei PR I NT � 43 _. CHR:•< 1 :29 >-+-•• SEARCH" -+-t::HR9<'.
1 2e :--
3�s0 PRI�IT � 7 � - STR:ING•c e , 1 3 1 >
:3!!570 PP. I NT " > l: NPI_IT SEARCH I TEM" , " >EN_TER
FOP. F I RST X TEM ON F X LE '"
3�80 PR I N T STP. l NG•<32 .• 1 37>
3�90 X NPUT "EN TF.:P SEARC.._.. COMMAND• •• � s•
3600 J:F S,..,.,,. .. " THEM GOTO 36�1?1
36 1 0 FOR S l '"" l T O t-.1-2
:3620 J:F J:NSTR c e•c s 1 � . s- �< >0 T EN GOTO 3

660
3630 NE�T S l
3640 RETURN
36�0 J:F J: NT('. Sl >-M-1 THEN RETURN
3660 CL'$
:3670 PPINT "' E MTRY " ., Sl � ", -"
:3€80 LET ST-0
3690 FOR t -0 TO �- 1
:3700 LET TEMP-ST - ,
3 7 1 0 LET S-S J . • GOSIJB 4060 • P R T NT A • < Y > .• " ' "'
; M J: D�C 9$C S 1 >,TEMP,ST-TEMP>
37'"2:0 NEXT J:
37'"30 LET s 1 -s 1 - 1
:::<740 PR J: NT I:!' 1 0 :.t::32 .• , . .,,..,..., . ..--,:::h • " 1 S•
37�0 PR: I NT '" COMMANDS AVA J: LAE'ILE , "'
3760 PP. X NT " > ' ENTER: ' FOS:.- NE><T ITEM"
:?77'"0 P P X N T "' > ' AA A ' TO AMEND"
3780 PP. Y NT " :"-- ·" CCC •" TO CON T Y N IJE SEARCH"'
37:5"0 PR J: NT " > ' Z Z Z ' T O QLI J: T Ft_lNCT J: ON "' ,
39"00]" MPUT P91
3 8 1 0 CLS
3820 :IF P!t<- "' CCC" THEN COTO 3620
:3830 I F P..,_ THEN GOTO 36�0
3840 :IF P .. - "AAA" THEN COSUB :3 121 :t 0 • GOTO :3<6 ""'
:3"Et�0 :IF p..,.,_ .. zzz" THEN RETURN
:38�0 LET s 1 -s 1 - :t • GOTO 36�0

Having placed your entries into the file, it would be nice to know that they
can be retrieved for later examination. More than that, since they are
stored in an electronic marvel, it would be nice to think that they could be
retrieved at high speed and in clever ways. This is what this module sets out
to achieve. Here again , we make use of the INSTR function on the Dragon,
one of the most useful innovations to have surfaced in recent years.

Commentary

Line 35 3 0: S 1 is the variable that will be used to point to the entry to be
displayed. Note that it starts at I since the first real (as opposed to dummy)
entry is at B$(1).

Line 357 0: To begin with the user is offered two choices:
1) to enter some characters which will then be searched for in the file.
2) to press ENTER, which will display the first item in the file.

Lines 361 0-3640: If the user inputs anything other than ENTER, this
simple loop will begin a fast search for it through the file. All that happens
is that the INSTR function is applied to each item in the file in turn. If it
produces a value other than zero, then the specified combination of

17

The Working Dragon

characlers is present in that file entry and it is displayed by a later part of
the module. Having displayed an item which satisfies the search criteria,
the search may be continued later if the user requires.

Line 3650: You may wonder why the INT function, which reduces a
number like t . 16 to the integer t , is applied to S I . The reason is that in a
module you have yet to enter, SI is set equal to the search variable S from
the binary search. That variable can sometimes pick up a totally invisible
fraction as a result of inaccuracies in the LOG function. You cannot see
anything irregular about the value of the variable, but it will never be found
to be equal to an integer like N (the number of items in the file). As a safety
check against this extremely infrequent occurrence, the INT function is
used. It could just as well have been done at line 3240 in the next module,
which sets SI = S + I .

Lines 3660-3720: You should recognize what is going on here from
previous lines you have entered. The subroutine at line 4060 is being used to
find the T symbols and thus identify the different items in the entry to be
displayed. The difference here to previous uses is that, with the aid of the
variable TEMP, the loop works all the way through the entry, rather than
finding only the first item: TEMP records the first character of an item
while ST is set by 4060 to the position of the T at the end of the item - then
TEMP is set to the position after ST, and so on.

Lines 3740-3850: Once an entry has been displayed, a new set of options is
offered to the user. The search can be continued (for the same target
characters), the next entry can be displayed, the search module can be quit,
or the amend module can be called.

Line 3860: SI must be decremented since it has already moved on one
place. This only happens if the user makes an incorrect input. The effect is
simply to leave the same entry on display.

Testing Module I. I. 7

Having set up and entered some material on your file, you should now be
able to search for any combination of characters within the file, or to move
through the file entry by entry, pressing ENTER. If a combination of
characters is not present in the file, the program should return to the menu.
The same should happen if you move past the last entry. Tagging T onto the
front of the characters you specify for a search should result in a search
only for items that begin with those characters.

18

Chapter 1 Storing and Sea1ching

MODULE 1 . 1 .8

3€100 REM**--tc"*********************
30 1 0 REM CHANGE ENTRY
3020 REM���*********************
3€18'21 LET s 1 -s 1 - 1
:3040 LET R•- ·· ..
30""50 P R T t-rr " ' ENTR' ... " , S1 ·' •• , - "
$060 LET ST-0
3070 FOR I -O TO �- 1
:3080 LET TEMP-ST- 1.
-S-C-90 LET s-s1. GOS:UEI 40'50 , PR T NT A•< T � • " "
, M I D�< e�-::: s , � . TEM P , ST-TEMP �

2 1. e"e" PR I NT ,� S>--.:�2- 1 2 ,._,..,_....,c,1••
:3 1 1. 0 p,:a, I MT " C-0::-...,MFH·tL''S A'-,'A T LA8LE • "
"3 1. 2(;11 PP: I N"T" " > E'NTE'.R > LEAVES T TEM I_INCHANGE
C• "
;;I 1 ?0 PR J" NT ' '.'-ENTF.'.R NEl.J I TEM "
:C, 1 40 PP: J" NT,_ > oc,o > DELETES HHOL.E'. F;.NTR V "
3 1 4 � PP: I M"T",_ > zzz · T O Q U Y T FUNCT T ON ""
2 1 ".50 GOSUE'" 40:30
S-1.€-E'I CL'S
31. 7'"0 IF Q"'"- " 2:Z?:_..._ " THEN RETURN
3 1 00 IF Q:$-" -r-" THE"H LE.:T Qs-i'1 J. D :f <. B S: <. S 1 -:, . T
EMP > ST-TEMP) - " -1""" ' C•OTCl 320121
3 1 .90 TF c:i•,,.... " ODC- ..-. " THEt,J GO-SUB 4'='00 P'ETURN
?200 LET P:•-P•-o•
3 2 1 . €1 NE:,.,:T J"
S:22121 GOSUB 4'=-30
3220 GOSUB 2""5e'l0
:3:240 LET S1 ..,,.$-+- J.
S:2""50 PETl_lf�':N

This module permits the user to make changes to existing entries and to
delete entries from the file.

Commentary

Line 3 1 50: Note the continuing use of the short subroutine at 4030 to
accept inputs.

Line 3180: Whether or not any changes are actually made, a new entry is
being built up in a string called R$, which will be presented to the insertion
module. If ENTER is pressed in response to any item, the item is lifted out
of the original entry and placed into the new entry.

Line 3 190: An input of DOD results in deletion of the entry by a module yet
to be entered.

Line 3200: Entry of any combination of characters other than the prompts
specified in the menu for this module is taken as the input of an item to
replace the item currently on display.

Line 3220: The current entry is deleted since the new entry may not fit
alphabetically into the same position.

19

1 ne wor1<.mg uragon

Testing Module /.1.8
The module cannot be properly tested until the next short module has been
entered.

MODULE 1.1.9
4�00 REM************************
4 � 1 0 REM TELESCOPE FILE
4�20 REM*****�******************
4�30 FOR I-S 1 T O N - 1
4�40 LET e•< I �-ssr I � 1 >
4'5�,e, MEXT I
4'5,S,e, LET N=t-� - 1
4�712' RETURt..J

This module simply shifts the whole file, from the position above the item
to be deleted, down one place, thus overwriting it.

Commentary
Line 4560: Note that there is now a duplicated item at the end of the file �
the dummy entry. This is not erased since once N has been reduced by I , the
program will no longer be aware of the position of the second entry.

Testing Module l .l .9
You should now be able to amend existing entries and also to delete them
from the file.

MODULE 1.1.10

20

60ei0 REM************************
60 1 0 REM DATA FILES
6020 REM************************
6030 MOTOR OM · 'AUDIO ON , CLS , INPUT "PO S J: T l:
O N TAPE THEN PRESS ��t�� <MOTOR l: S ON> •
•• _, Q -9';
6040 MOTOR OFF , X NPUT '"PLACE RECORDER :C NT
0 CORRECT MODETHEN PRESS �r,-t:;.-e-� • " • G!-
6121!'5,e, PR l: M T , PR l: MT ''FUNCTIONS A'•'F=I l: LA8LE • " ,
" 1 >SA'·.-"E DAT A " � , "2 >LOAD DATA" , INPUT "WH l: C
H DO YOU REQU l: RE • " _, Q ON Q GOTO 6070 � 6 1 90
60'50 RETURN
6070 MOTOR ON • FOR I- 1 TO 1 0000 • NEXT
6080 OPEN " 0 " ., £- 1 - " UNIFILE"
6090 PRINT £- 1 , X
6 1 00 FOR I-0 TO X - 1
6 1 1 0 PR I NT £- 1 , A•< I>
6 1 20 NEXT X
6 1 30 PRINT £ - 1 , N
6 1 40 FOR I- 1 TO N-2
6 1 �0 PRINT £ - 1 , B.C I >
6 1 60 NEXT I
6 1 70 CLOSE £ - 1
6 1 8 0 RETI.JRN
6 1 90 PCLEAP 1 · CLEAR 20000 • D :I M e•<499>
6200 OPEN ''I'' , £ - 1 , '' UNIFILE''
62 1 0 IMPUT £ - 1 , X
6220 D :I M A,ts<:'. :,..: :>
£.230 �OR I =0 TO X - 1
6240 INPUT £- 1 .• A ... < l: >
62!!'50 NEXT I
62'50 I NF"UT £- 1 _. M
6270 FOR r - 1 TO N-2
6280 INPUT £- 1 , 8�(1: >
6290 NE�T I
6300 LET E>•< ,e, >-C-HR•< 0 >� ",_"
63 1 0 LET a ... o:: N- 1 ,-cHR'!!fl(,2"'=i""."; --.+ "-."
6320 GOTO 1 000

Chapter 1 Storing and Searchmg

This module, or one very much like it, will be shared with the vast majority
of programs in this book. Its purpose is to allow the user to save the
contents of the file and the associated variables, on tape. The advantage of
this is that if changes have to be made to the program, or when the machine
is switched off, the data need not be lost. Many modern micros
automa1ically save the data associated with a program when that program
is saved (or CSA VEd), unfortunately the Dragon does not. To make up for
this the Dragon provides a flexible set of file handling commands which
allow data to be stored on tape and retrieved with ease. This module is
designed to make the process of finding the right place on the tape and
saving or loading as painless as possible.

Commentary

Line 6030: This command is included for those who have purchased the
special lead to connect the Dragon to their cassette recorder and can
therefore place their recorder under the control oft he Dragon. If you don't
have such a lead it will serve as a reminder of 1he procedure 10 follow in
loading or saving. What the line does is to switch on the cassette recorder's
motor, and the Dragon's AUDIO function, thus allowing you to position
the tape in the recorder to take account of the contents.

Lines 604 0-6050: Having positioned the tape, the casselte is put into
record or playback mode, according to whether you want to load or save.
The correct function is then chosen from the menu.

Lines 607 0-618 0: This section prints a 'header' of several seconds before
actually recording the data. This ensures that when you read the data back
you are not going to find it immediately preceded by the garbled contents
of some previous recording, leading to an error message. The rest of the
section opens an output file, that is, opens communication with the
cassette recorder and then 'prints' into that file (i.e. onto tape) the contents
of A$ and B$.

Lines 619 0- 63 2 0: This section is slightly more complex since, before
loading a set of data from tape , the memory must first be cleared in the
same way that it would be in setting up a file in the first place. In addition,
once having cleared the memory, arrays must be set up to receive the data.
In the case of the array A$, this cannot be done until we have first read
from the tape the number of item names it is to contain. Lastly the dummy
entries must again be loaded into first and last place. They cannot be saved
on tape and reloaded since they are not recognised as real characters by the
Dragon's operating system. Since the memory has been cleared we must
return with a GOTO, as in Module 4.

21

The Working Dragon

Testing Module I. I.JO
Having entered some data and satisfied yourself that the rest of the
program functions are working satisfactorily, call up this module from the
menu and save the file on tape. Stop the program then restart with RUN,
which will wipe out all the data. Call up this module again and reload your
file- it should beas if you had never lost the data. If this module functions
correctly then the program is ready for use.

Summary

You have now completed the input of a substantial and complex program
which I hope you find useful in a variety of applications. Along with that
process you have also learned a number of techniques which will stand you
in good stead whenever you decide to embark on ambitious programs to
store and process non- numeric data.

More importantly, however, if you have taken the trouble to understand
what you have been entering, you will have gained confidence that
substantial and complex programs are not as awesome as they are often
made out to be. Using a modular approach which breaks down the
program into a series of manageable tasks, applications like this one can be
tackled by anyone who is prepared to i,vest a little time (and a little hair).

Going further
I) The program is deliberately written without much use of
multi-statement lines. Once it is working well and you understand what is
going on, try to reduce the number of lines by combining them where
appropriate. Substantial memory savings are to be had in this way.
2) The program makes no provision for output to a printer if you possess
one.
3) One fascinating challenge would be to see if you could make the
program handle numeric data as well as strings. This would involve setting
up a numeric array with 500 elements, at least, and making provision to
input values to it and perhaps some search commands appropriate to the
stored values, like 'search for all items larger than specified number'.
There are quite a large range of applications where the ability to store one
or more numeric items in an entry would be an advantage.

1.2 UNIFILE II

After entering Uni file I and debugging it, the last thing that you may want
to face is variations on it, so feel free to skip this part of the chapter forthe
present if you'd like to move on to fresh pastures. At some stage, however,
you will want to come back to this program to solve some problems that
Unifile itself is not designed to cope with. Unifile is fine for those files
which have a regular structure, and many do. Equally, there are a large

22

Chapter 1 Storing and Searching

number of applications where you simply do not know in advance how
many items there are going to be in an entry. You may, for instance, want
to catalogue your books. You could set up the original Uni file program to
request author and title but if you happen to have several books by the
same author, that is going to be a great waste of space.

Unifile II is designed to cope with such less structured files. It is more
nexible than Uni file I in that you can go on adding items to an entry as long
as you like (provided that the total length does not exceed 255 characters).
The price to be paid is that the program is more complicated to use since
there are none of the easy prompts as to which item to put in next. If you
want to label items you have to specify the labels to be attached to them.
The program is also more flexible in that it will conduct a 'multiple search'
- that is, it will search for entries in the file which satisfy a number of
search criteria at the same time like all entries containing ' red' and
'London' and 'male' if you were looking for the entry of a red-headed man
who lives in London.

Because the program is so similar to Uni file I we shall begin by entering
the only new module it requires and the rest of the modules will only be
commented upon insofar as they differ significantly from the original.
Note that the modules are in the same place within the program but that
there is not an exact correspondence between line numbers. You can use
Uni file I as a basis for entering this one but you will need to adapt GOTOs
and GOSUBs here and there.

MODULE 1 .2 .I

�000 REM ***********************
�010 REM ITEM TYPES
�020 REM************************
�030 FOR I-0 TO 49 STEP 7
�040 CLS• FOR J-I TO 1 �6
�0�0 PP:INT -J� 1 ; •• >" .• A91< J >
�060 NEXT _,
�070 PR I NT, PR :r NT '' COMMANDS , "
�000 PRJ:NT " > ' ZZ Z ' QU J: T "
�090 Pf:! J:NT " > ' J: J: I ' -ITEM "
�100 PR J:NT " > ' NNN ' -NEXT PAGE"
�1 1 0 XNPUT Q 91 • l: F Q•- " ZZ Z " TI-IEN RETURN
�120 IF Q•- "NNN " THEN NEXT X • F.>:ETURN
�130 J:F Q � - ·· r x x ·· TI-IEN INPUT ''NUMBER • '' J TY
PE XNPLl:T " TYPE NAME " ; Cl• , LET A•< TYPE- 1. >-
0$ • CLS · COTO �040
� 1 4-0 C:OTO �110

Since there will be no regular structure to the files this program will handle,
there will be no regular set of headings for the item,s. This module allows
headings to be stored which may be attached to items if the user specifies a
heading when an item is input.

Commentary

Lines 5030-5040: The effect of these two loops is to display all the items
stored in A$ in batches of 7.

23

The Working Dragon

Lines 5070-5130: The user has the option of moving on to the next batch
of item headings, quitting the module, or inputting III . In the latter case,
the user is asked to specify a position in the dictionary and a heading to be
placed in that position. There is no provision for deletion, which can in any
case be accomplished by simply inputting an empty string to the desired
position. The use of these item types will be discussed later.

Testing Module 1 .2.1

Full testing of this module cannot be undertaken yet, but a temporary test
can be made by dimensioning an array A$(49) in direct mode and then
entering GOTO 5000. You should be a ,le to enter item types, to delete
them and to alter them.

MODULE 1 .2.2
1 000 REM*************************
1 0 1 0 REM MENU
1 020 REM *************************
1 030 CLS • PRINT � 9 . STRING•<9 . 1 40 >
1 040 PRINT � 4 1 • CHR•< 1 28 :>+"UNIFILE"+CHR•

< 1 2 8 >
1 0�0 PRINT � 73. STRING*C 9 , 1 3 1 :>
1 060 PRINT • PR J: NT " COMMANDS AVAILABLE• "
?-, 070 F'RIMT PR J: MT " 1 :>SET IJP NEW FILE

1 080 PR I NT " 2 >ENTER I NFORMAT :C ON ••
1 0:9'0 PRINT •• 3>SEARCH/D J: SPLAV....-CHANGE"
1 1 00 P R :C NT " 4>DATA FILES"
1 1 1 0 PR :C NT " � :>NEW :CTEM NAMES"
1 1 20 PR J: N T •• 6 >STOP
1 1 30 PR J: N T , INPUT "WHICH DO YOU REQUJ:RE • .. � z
1 1 40
1 1 �0 ON Z GOSU8 1 � 0 0 . 2000 . 3�00 . 6000. �000
• 1 1 80
1 1 60 CLS
1 1 70 GOTO 1 000
1 1 80 PRINT � 260 . STRING*<:22, 1 40 :>
1 1 90 PRINT � 292.• CHJ:;:•< 1 28 >+ " FILING
M CLOSED" +CHR!tlC 1 28 :>
1 200 PRINT � 324 , STRING*<22, 1 3 1 >
1 2 1 0 END

For comments and testing see Unifile 1. 1.1, with the exception that you
should be able to call up the item names function, which will report a BAD
SUBSCRIPT error.

MODULE 1 .2.3

4000 REM************************
4 0 1 0 �EM FUl-�CT :C ONAL SUBROUTINES
4020 REM ************************
4030 LINE INPUT 0$
4040 LET o•-Q•-+-" .,..._ "
40�0 RETURN
4060 LET ST- I NSTR< ST+ 1 .• El!tl< S > _. ",..._ • • >
4070 P.ETUF='.N

As Unifile I 1 .3.

24

L.naprer 1 �wnny c111u .,�,111,11111y

MODULE 1 .2.4
1 !500 REM************************
1 � 1 0 REM ENTRY STRUCTURE
1 ::520 REM************************
1 �30 PCLEAR 1 • CLEAR 20000
1 ::540 D :I M M•< 1 9 >
1 5::50 D :I M A•< 49 >
1 560 D :I M B•< 499 >
1 57"0 LET e•< 0 >-CHR•< 0 >-+- " ,._ "
1 ::580 B•< 1 >-CHR• < 2�� >-+-" --. "
1 !5:90 N-2
1 600 COTO 1 000

Shorter than the equivalent in Unifile, since there is no need to make
provision for the input of item headings here.

Commentary

Line 1540: The array M$ will be used to store the individual items to be
searched for when a multiple search is specified. Accordingly, up to 20
items can be included in the search.

Line 1550: A$ will be used to store the item headings input by Module
1 .2 . 1 . There can be 50 such headings.

Testing Module 1.2.4
Calling up menu function 5 after calling this module should not result in an
error as before.

MODULE 1 .2.5

2000 REM************************
20 1 0 REM NORMAL :I NPUT
2020 REM************************
2030 LET R• - •• "
2040 PR :I NT � 1 0 - STR :I NC•<9 - 1 40 >
:2050 PR :I NT I::!! 42 � CHR•< 1 ::2:e >-+- •• ENTR :I ES •• -+-CHR•
< 1 29 >
2060 PR :I NT I::!! 7" 4 � STR :I NC•<9' - 1 3 1 >
2070 PR :I NT " COMMANDS AVA :I LABLE • ••
2080 P R :I NT " >ENTER :ITEM SPEC:I F IED < � * - E
NDS > " ; , P R I N T •• > � zzz - TO RETURN TO MENU"
:209'0 PR Z NT STR :I NG•< 32- " * •• > J
2 1 00 P R :I NT '0 NUMBER OF :ITEMS , •• J N - 2 J '0 /500"
2 1 1 0 Gosue 4030
2 1 20 IF Q · - ·· zzz---- ·· THEN RETURN
2 1 30 IF LEN <R•>-+-LEN <Q• > >:2�5 THEN PRINT

•• ENTRY TOO LON G . " • FOR J- 1 TO 5000 • NE><T
_, • f.!:ETURN
2 1 40 YF LEFT•<c• - 1 >-·· :e:: ·· THEN P R :I NT A• < vA
L<M :I D$('. Q • • 2 . 2 >>- 1 > J '0 • "' J
2 1 50 :I F LEFT•<Q• - 1 >- " £ " THEN PR X NT M :I D• <
Gt• - 4 - LEN< c • > - 4 > ELSE PR :I NT " UNTYPED• " ; LE
FT•<C• . LEN<Q• > - 1 >
2 1 7"0 LET R•-R•-+-c•
:2 1 80 :I F LEFT•< Q 1 >< > " * " THEN GOTO :2 1 1 0
2 1 9'0- CLS
2200 COSUB 2!500
22 1 0 COTO 2000

Function as in Unifile Module I 1 .5.

25

f he Working Dragon

Commentary

Lines 2140-2150: These two lines illustrate one difference between this
program and its predecessor. If the first character of an input consists of
the symbol # then the next two characters are taken to be a two digit
number between I and 50. The item input is reprinted with the item heading
found at that position in A$ preceding it. If no item heading is specified,
the item is reprinted with the heading Untyped:.

Line 2180: If the item input was a single asterisk, this is added to the entry
but the entry is regarded as finished and control is passed to the insertion
module.

Testing Module 1.2.5

You should be able to input item headings and to see them displayed if you
tag #NN onto the front of an item you are inputting (where NN is the
number of a heading you have entered).

MODULE 1.2.6
::2:�00 REM************************
2� 1 0 REM PLACE DATA IN FILE
::2:�20 REM************************
25�0 IF N<�00 THEN GOT02�S0
��40 CLS • PR:INT ll! 1 4*32-+ 1 0," FILE NOW FULL

::2:��0 I - 1 TO �000 • NE><T I • Fo!:ETURN
2�60 LET POWER-INT C LOGC N- 1 >?LOG<2> >
2�70 LET S-2-POWER:
2�00 LET T•-LEFT•< R• _. I NSTR< R•, " - " > - 1 >
2�90 FOR K-POWER- 1 TO 0 STEP - 1
::2:600 LET ST- 1 • GOSU0 4060 • LET u•-LEFT•< B•
< S >, ST- 1 >
::2:S 1 0 IF T• >u• THEN LET s-s-+2-K
2620 IF T•<u• THEN LET s-s-2-K
::2:630 IF S >N- 1 THEN LET S-N- 1
::2:640 IF S< 1 THEN LET S- 1
::2:6�0 NEXT K
::2:660 LET ST- 1 , cosue 4060 • LET u•-LEFT•<e•
< S>,ST- 1 >
::2:670 IF T•<u• THEN LET s-s- 1
::2:600 FOR I-N-+1 TO INT<S+2> STE P - 1
2690 LET B•< I>-B• < I - 1 >
::2:700 NEXT I
::2:7 1 0 LET e•< s+ 1 >-R•
::2:720 LET N-N+1
::2:730 RETURN

Identical to Uni file Module 1. 1.6.

MODULE 1. 2.7

26

3�00 REM************************
:;:'t!!:5 1 0 REM SEARCH
:3�20 REM************************
:3�30 LET S 1 - 1
3!!:540 IF N-2 THEN RETURN
3!!:5�0 PR I NT � 1 1 ,STR I NG�< 0,1 40>
:3�60 PR I NT ll! 43, CMR•< 1 ::2:Et >+"SEARCH "+CHR•<
1 20 >
:3�70 PRINT � 7� , STRING-� 8, 1 :3 1. >
��'90 PRINT " > JN,=>1.JT SEARCH I TEM" " :>ENTER'
FOR FIRST ITEM ON F t: LE"
:'.:1'�90 PR I NT " > ' MMM' FOR MULTI F'LE SERRCM "
�600 PRINT STRING•<32, 1 37>
�'5 1. 0 INPUT "ENTER SERRCH COMMAND• " J S•

Chapter 1 Storing and Searchmg

3620 r F s•- " " THEN GOTO 3740
3630 'IF s•- "MMM" THEN GOTO 3680
�640 FOR S l - 1 TO N-2
�:�0 'IF INSTR <�•<S1> , S• >< >0 TMEN GOTO 3

::'.:1660 NEXT 8 1
;3670 RETUPN
:;1680 CLS
3690 PR 1: NT, INPUT "NUMEIER OF" SEARCM t: TEMS
, "� SEARCH FOR K-0 T O se:,=u:;.:cM- 1 , PR 1: NT "SEA

RCH t: TEM "J 1< + 1 � " " ., :I NPUT Q• , LET M•< K >­
C!9 · NE:-<T K
:37'00 FOR s 1 - 1 TO N-2
�710 FOR K-0 TO SEARCH-1 • I F t:NSTR<S*< S l >
, M$< K > >< >0 THEN NE�T !< • COTO 3730
::'.:17'20 NE�T S 1 RETURN
::'.:1730 I F I NT< S 1 >-N-1. THEN RETURN
3740 CLS
;37�0 PR'INT ''ENTRY '• , s1. , •• , - ••
::'.:1760 LET ST-0
�770 LET TEMP-ST+ 1
37'80 LET s-s 1 GOSUB 40,S0
::'.:17'9(!'1 J:F M J: D•< B•< S l. > . TEMP ., 1 ::> - " * " THEN GOT
0 383(!'1
::'.:1'800 l: F M I O•< e•< 81 > .• TEMP., 1 > - " :'!:: " THEN P R :t
N T A$<VAL<M :tD�< B•<S 1 > . TEMP+1 , 2>>-1. > , '' • '' ,

· LET C l - :3
3810 PR:INT MID•<B•<S1 � . TEMP-C1 ,ST-TEMP-C
j. > • LE T C 1 -0
3820 GOTO :3?"70
:?E":30 LET s 1 -s:1+1
3840 F"RJ:NT I!! 10:1'32 .· "!9--.P,.,...ch, "J s•
38�0 PRINT " COMMANDS AVA I LABLE • "
3860 PRINT '' > ' ENTER' FOR NE�T 1: TEM''
38?"0 PR INT " > • AAA' TO AMEND "
3880 P F!: :I N T " > • ccc · TO CONT INUE SEAF:;.:CM"
39'90 PRINT " > · zzz· TO QU J T FIJNC T J: ON " ;
:3:900 INPUT F'"91
391. 0 CLS
3920 :I F P�-"CCC" AND S•-"MMM" THEN GOTO
�71.0
:;1930 :IF ,.,...,_"CCC" TMEN GOTO 36�0
394-0 XF" p, THEN GOTO 3730
'39�0 IF ,,,.,__ "AAA " THEN GOSIJB 301. 0 , GOTO 37'
:30
:3960 l:F ,.,.,__ ,. Z :Z Z " THEN R:E:TU�N
�9?"0 LET s 1. -s 1 - l. • GOTO 3730

The same function as the module in Uni file I except that provision is made
for multiple searches.

Commentary
Lines 3680-3720: If a multiple search is specified by the input of MMM
then the user is asked to specify how many items are to be searched for (up
to 20) and then to input them one by one. The file is then scanned for the
first of the items specified. If it is found in an entry, then the same entry is
scanned for the next search item until it has been scanned for all the search
items. If all are present in an entry then the item will be displayed. If no
entries are found to contain all the specified search items, the program
returns to the menu.

Line 3790: Since there is no regular number of items in an entry the
program goes on printing items until it comes across an item which consists
of •.

Line 3800: Item headings from A$ are printed where appropriate.

27

The Working Dragon

Line 3920: To continue a multiple search we have to jump back into the
middle of the loop in order not lO reset S I lO I .

Testing Module 1.2. 7

As for the equivalent module in Uni file except that you should be able to
specify a multiple search too.

MODULE 1 .2.8

3000 REM************************
3'0 1 0 REM CHANGE ENTRY
3'020 REM************************
3'030 LET s 1 - s 1 - 1
3'040 LET R • - •• ••
3'0�0 LET ST-0
3060 CLS, PF' INT " ENTRY "J Sl. J " , -"
3070 LET TEMP-ST+l.
3'090 LET s-s 1 • GOSU8 4060
:3090 :IP MID•< es< S t. :,, _. TEMP .. ST-TEMP '.">-"*'' TH
EN LET Rs-i==o:•+"-.: ,...._ ,, •GOSUB 4�30 , GOSUB 2� 1 0•
Fl:ETUF:s:t-1
3' 1 00 :IP M T D•< B•< S 1 :-, _. TEMP .. 1 :->- " £" THEN PR Y
NT AS< '•/AL< M Y D•< B•< S:1 '."> . TEMP+l. , 2 '."> '."> - 1 '."> J " • " J

• LET Cl.-:3
3 1 1 0 PRYNT M I D• < BS< S 1 '."> , TEMP+C 1 , ST-TEMP-C
1 '."> • LET C t. -0
3' 1 :20 P R INT (JI! 7:+:3:2 1 2 , •,,e--nd''
:3 1 :30 PR I NT "COMMANDS AVAILAEILE • "
3 1 40 PR I NT " > ' ENTER ' LEAVES T TEM UNCHANG
ED"
:3 1. :50 PRINT " >NElJ :ITEM END I N G W I T H ' > ' ..
31 e:e PR I NT " >ENTER REPLACEMENT :r TEM ••
:3 1 70 Pl=i!: INT " > ' zzz, Q U Y TS W I THOUT CHANGES

3' 1 90 PR I NT " > ' DDD ' DELETES W.,._.OLE ENTRY"
:3 1 90 PR :I NT " > ' !=i!:P. R ' REMOVES T.,._. :C S :C TEM"
3200 GOSUB 403'0
:32 1 12'1 CLS
32:20 l:P r,::i•- " ZZZ,...._" THEN RETURN
:3230 I P l';!S-- " RRR.- " Tl--4EN GOTO :30"50
3240 :I P R J GHT• < Q S 2 >< > " >...._" AND Q9-< :>".-" T
HEN GOTO :32�0
:3244 I P LEN<R• >--ST-TEMP 1 >2�� THEN CLS• P
R INT "ENTRY NOl-J TOO LONG . " • F'"OR :r - 1 TO �0
00 • NEXT • RETUP.t-1
�:248 LET R•-R•+M :r O•o:: B'!II< St: > .. TEMP, ST-TEMP
' >
32�0 CLS
:;:t260 I P Q,__ ., ,..... ,. T.,._.EN GOTO 30'50
327"0 "IP r;:i•-"000_" T.,._.EN GOSUB 4�00 • RETURN
3'2812'1 YI=" R I GHT .. < Q• , 2 :-,-•• >.-" T.,._.EN LET c:>•-Le:
FTS< G'.'$, LEN< Q• >-:2 >, LET Q - - Q - -- " _ "
3282 Y P LEN<R•>--LEN< Q• :-> >2�� TMEN P R I NT C
LS • PR :r NT "ENTRY NOl.J TOO LON G . " , POR 1: -1.
TO �000 • NEXT · RETURN
3290 LET R•-R•+o•
3300 GOTO 30'50

A slightly more complex module than the equivalent one in Uni file I, since
provision must be made for the insertion and deletion of items, not simply
of entries.

Commentary

Lines 3230: Input of RRR does not add the existing item to the new R$
being built up, thus effectively deleting it from the entry.

Line 3240: In the case of an input ending in > the item currently on display
is added to the new R$ thus insertions are always after the item currently
displayed.

28

Chapter 1 Storing and Sesrchmg

Line 328 0: Insertion of items input ending in > .

Testing Module 1.2.8

You should be able to delete entries, to amend items, to delete items and to
insert items.

MODULE 1. 2.9
4�00 REM************************
4� 1 0 REM TELESCOPE FILE
4�20 REM************************
4�30 FOR I-S1 TO N - 1
4�40 LET EIS<I >-e•< I+ 1 >
4��0 NEXT I
4�1150 LET N -N - J
4�7'0 RETURN

Identical to Unifile 1 1.9.

MODULE 1. 2.10
6000 REM************************
60 1 0 REM DATA FILES
6020 REM************************
60:30 MOTOR ON • AUDIO ON• INPUT •• posITION T
APE THEN PF?.ESS e-.,...te-.- < MOTOR IS ON ::, , " > Q•
6040 MOTOF?. OFF , J: N P l,.IT •• PLACE RECORDER T NT
O CORRECT MODETHEN PRESS <r.,...t.e-.- ' " > Cl•
60�0 PR I NT • PR I NT •• FUNCTIONS AVA I LA8LE • •• ,
•• 1 >SAVE DATA•• .• .• "2 >LOAD DATA•• ' INPUT •• l.JH T C
H D O YOU REC!U TRE · ") Q• ON G! GOTO 607'0 , 6 1 !50
6(31'$0 RETURN
607'0 MOTOR QN , FOR J: - 1 TO 1 0000• N EXT
6080 OPEN " 0 °' , £- 1 , ·· oBASE ''
6090 FOR J: -0 T O 49• PRINT £-1 A•< T >• NEXT
6 1 00 PRINT £ - 1 ,N
6 1 1 0 FOR I- 1 TO N-2
6 1 20 PRINT e- 1 , e•< I �
6 1 31121 NEXT I
6 1 40 CLOSE £ - l • RETURN
6 1 �0 PCLEAR 1 · CLEAR 20000 • D T M A•<49 > . B•<
499 > , M!I<< 1 9 >
6 1 60 OPEN " I " .• £- 1 . "DBASE"
6 1 7'0 FOR x -0 TO 49 · INPUT e - 1 , A•< I > • NEXT
6 1 80 INPUT £- 1 , N
6 1 90 FOR x - 1 TO t-�-2
6200 INPUT e- 1 . e•<I >
62 1 0 NEXT I
6220 CLOSE .£ - 1
6 2 3 0 L E T B • < 0 >-CHR:•< 0 >_ .. ,..... . .
6240 LET 8""< N- 1. >-CHR•< 2::5� >-" _._"
G:2:�e, GOTO t 000

Almost identical to the equivalent module in Unifile I.

Testing Module 1.2.10

If this module is functioning correctly you deserve some kind of medal and
the program is ready for use.

Summary

The comments made in relation to Unifile apply equally to this even more
substantial program.

In addition, I hope that entering this program has given you some
insights into the strengths of modular programming - as writing it did for

29

The Working Dragon

me. This whole program, when it was first written, took less 1han a
morning for the simple reason that 1he structure was already laid down in
the Unifile I program and its modular form made it dear where changes
would have to be made. Provided that a desperate need for space does not
lead you to compress everything as much as possible, you will save time and
many tears over your life as a programmer by setting out your programs in
clearly labelled functional units. Not only does this make the programs
readable, it increases the likelihood that you will be able to call the same
routine from different parts of the program, eases replacement of
functions 1hat you feel you can improve upon later and, not least, makes it
a great deal easier to lift whole sections of program out for use in other
contexts.

Going further
I) One sophistication that is present on professional database programs is
the ability to order a search for entries containing, say, four out of eight
specified search items. It should not be difficult to include such a provision
in the present program.
2) The developments suggested for Uni file I would be equally applicable
to this program.

30

CHAPTER 2

Managing your money

Where microcomputers are set to work in the home, it is most often in
handling family finance, and for that reason we turn our attention in
this chapter to three financial programs. Their interest, however is not
limited to those who wish to use their Dragon to supervise their finances,
for in discussing the programs we shall be examining problems common
to all programs which handle fairly large bodies of numeric data.

2.1 BANKER

This program is a neat tool which allows you to keep your financial
records in much the same form as a bank statement. It deals with
recurring payments, both regular and irregular and inserts them into
each monthly statement on the day on which they occur.

The program is a relatively simple one compared to what has gone
before but it is worth pointing out that it is not as uncomplicated as it
looks at first sight, since in this program, for the first time, we make use
of a considerable proportion of multi-statement lines. Without them the
program would appear considerably longer.

One of the points to watch out for in entering this, or any other
program which uses multi-statement lines is the behaviour of IF
statements. Such statements are capable of creating havoc if used
improperly in multi-statement lines, creating program bugs which are
extremely difficult to trace. Equally, multi-statement lines can be used to
increase the effectiveness of IF statements by virtue of the fact that if the
condition specified by an IF statement is not met, the program does not
simply skip over that part of the line directly tied to the IF statement, it
skips over the whole of the rest of the line.

In other words, any statements after the IF statement will only be
executed if the IF statement is true. This is so different from the
behaviour of single- statement lines that it is easy to be caught out by it.

The advantage of all of this is that it provides a form of automatic and
elegant GOTO that you do not even have to specify. If you have a series
of 10 operations that will be performed together provided, say, that
C = I at some point, then with single statement lines you would have to
place an IF statement at the beginning of the section to specify a jump
past the 10 operations if C is not equal to I. It works but at the same

3 1

1 ne vvor1<mg uragon

time it feels messy and it is difficult to read a program in which there are a
lot of such jumps.

With multi-statement lines , however, you could begin a single line with
IFC = I and follow it with the l 0operations. Not only would this work and
save memory, it would actually make the program more readable, since it
would be immediately clear that the 10 operations form a logical unit.

MODULE 2 .1.1
7000 REM************************
70 1 0 REM FORMAT T I TLES
7020 REM************************
7030 LET P2- 1 4-INT<LEN< F• >/2 >
7040 PRINT � 32*P 1 +P2 > STRING•< LEN<F• >+2 >
1 ::50 >
70::50 PRINT � 32*< P 1 + 1 >+P2, CHR•< 1 ::50>+F$+C
HR•< 1 ::50 >
7060 PRINT � 32*< P 1 +2>+P 2 , STRING•< LEN< FS
>+2. 1 ::50 >

7070 RETURN

In entering the last two programs, you may have found the lines needed to
decorate the program titles a little tedious to enter. This module is the
answer. It creates the same kind of decorative box around a word or phrase
but once entered it can be applied to a variety of different titles at different
points during the execution of the program. All that needs to be specified
before the module is called up is the line on which the title is to be printed
and the title or phrase itself. Clearly the graphics characters specified in
lines 7 04 0-7 06 0 can be altered to taste.

MODULE 2 .1. 2
1 000 REM************************
1 0 1 0 REM MENU
1 020 REM ***********************
1 030 CLS• LET F•- " BANKER " • LET P 1 - 1 • GOSUB
7000
1 040 PR I NT • PR I NT " COMMANDS AVAILABLE ' ••
1 0!50 PR I NT • PR I NT " 1 >NEW PAYMENTS ••
:1 .01150 PRINT " 2 >EXAMINE/DELETE PAYMENTS"
:1. 070 PRINT " 3 >PRINT STATEMENT"
:1. 080 PRINT •• 4 >DATA F X L E S "
.t. 090 PR l: NT • • !5 > :C NITIAL X S E "
.t. 1 00 PRINT " 6 >STOP"
1 1 10 PRINT, J: NPUT " WHICH DO YOU REQUIRE ' • •
> Z • CLS
1 1 20 XF Z< >::5 AND IN-0 THEN CLS • PR I NT �7*
32 > "PROGRAM NOT INITIALJ:SED YET . " • FOR I-
1 TO !5000 • NEXT• GOT0 1 000
:1. 1 30 XF PAYMENTS-a AND < Z- 2 OR z-3 > THEN

CLS • PR :I NT • PRINT "SORRY, NO DATA YET . " • F
OR I- 1 TO ::5000 • NEXT I • GOTO 1 000
1 1 40 ON Z GOSUB 3000 > 4000 , ::5000 > 6000 , 2000
> 1 1 60
1 1 !50 GOTO 1 000
1 1 60 CLS , LET F • - " BANKER " • LET P 1 - 1 • GOSUB
7000
j. 1 70 LET F• - " C LOSED FOR BUSINESS " • LET P 1
-7• GOSUB 7000 • :STOP

A standard menu module but its execution should provide ar'nple proof of
the effectiveness of the previous module in brightening up the presentation
of the program.

3 2

Chapter 2 Managing your money

MODULE 2. 1. 3
2000 REM************************
20 1 0 REM VAR Y ABLES
2020 REM************************
�:�: r��E��- ! • CLEAR 1 0000 • LET FLAG-0

20�0 D Y M A•< 99 , 1 > , A< 9 9 , 1 > , LET A<0 , 1 >-999
2060 O Y M MONTH•< 1 2 > • RESTORE • FOR Y-0 TO 1
1 • READ MONTH•< Y > • NEXT Y
2070 DATA "JANUARY", "FEBRUARY", "MARCH","
APR Y L", "MAY" , " -IUNE", " JULY", "AUGUST", " SEP
TEMBER" , "'OCTOBER"' , "NOVEMBER" , "DECEMBER"
2000 YF FLAG-0 THEN GOTO 1 000 ELSE GOTO
6 1 40

This module initialises the program variables.

Commentary
Line 2030: The variable FLAG is used in an interesting way here- to make
up for the lack of GOSUB .. . RETURN when the memory has been
cleared. Normally this module is called from the main menu but on some
occasions it is called from data file module, before loading data from tape.
In that case, the data file module clears the memory first and then calls this
module from line 2 040, first having set FLAG to 1. When program
execution reaches line 2 08 0, FLAG can be easily used to determine whether
the program is to return to the main menu or to the data file module.

Line 2 04 0: This program, like many others, is capable of accepting a few
entries without the variables having been properly initialised. After a few
entries the program stops - a frustrating experience. The variable IN
(initialised) is therefore used in the main menu to determine whether this
module has yet been called. If IN is I at line 1120 then all the program
functions are available, otherwise you can only call this module.

Line 2 06 0: DAT A statements are not only useful for storing complex facts
and figures. Here READ, DATA and RESTORE are used to simplify the
placing of the names of the months of the year into an array for later use.

Testing Module 2./.3
This module can only be properly tested when other modules begin to call
upon the variables it has set up but you might like to check that the months
of the year are stored in MONTH$.

MODULE 2. l . 4

�000 REM************************
30 1 0 REM ENTER NEW ITEMS
3020 REM************************
3030 CLS , LET F•-"NEW ITEMS" , LET P 1 -0 • GOS
ue ?000
3040 PRINT " 1 >CREDIT" , , " 2 >DEBIT" • INP
UT "WH Y CH DO YOU REQU Y RE , " ; CO • LET co-cD-

30!!50 PRINT 1:R 7'*::32 , ""; , INPUT "NAME OF
MENT • " ; Q•

3 3

1 ne Wor1<.mg uragon

:3060 P R I NT Cl!: �*32 . '' '' -' • I NPUT '' AMOUNT• '' .J Q
:307"0 P R I NT Cl!: 1 1 *:3:2: . " " _. • INPUT " MONTHS < E .
G . 0 1 0407" 1. 0 ::, , " > R•
3090 PR I NT Cl!: 1 1 *:32-+-24 . " " , • FOR I - 1 TO L.EN<
R• ::, STEP 2 • PR I NT M I D• < R• , I , 2 ::,; , . _,. ., ; • NEXT
I
3090 P R I NT Cl!: 1 3*:32 . " " ; • I NPUT " DAY OF PAY
MENT• " > S
:3 1 00 P R I NT Cl!: 1 ::5* :3 2 . " " ;. • I NPUT " ARE THESE
CORRECT < V./N ::, • •• _. T•, IF T• - " N " THEN CL.S • GO
sue 3000
:3 1 1 0 L.ET PAVMENTS-PAYMENTS-+- 1 • FOR J-PAYME
NTS- 1 TO 0 STEP - 1
:3 1 20 IF S < A<J , 1 ::, THEN FOR K-0 T O 1 • L.ET A
•<J-+- 1 . K >-A•<J . K ::. • L.ET A<J+ 1 ,K ::.-A< J . K ::.• NEX
T K • NEXT J
:3 1 30 L.ET J-J -+- 1
:3 1 40 L.ET A•< J , 1 >-STR I NG•< 1 2 , " 0 "), , FOR I - 1

TO L.ENC R• > STEP :2: • M I D• < A• < J , 1 ::, , VAL.C MIDS
C R• . I • 2) > • 1 >- " l. " , NEXT I
:3 1 ::50 L.ET A•C J , 0 >-Q•• L.ET AC J , 0 >-ra
:3 1 60 LET AC J , 1 >-s
:3 1 7"0 IF co- 1 THEN LET AC J , 0 >-AC J , 0 ::,* - 1
:3 1 00 RETURN

The purpose of this module is to accept new payment items, whether credit
or debit, and place them into their correct place in the file of payments.

Commentary

Line 3040: The only distinction made between credit items and debit items
is the setting of the variable CD to 0 or I .

Line 3070-3080: The user i s required t o input months i n which the
particular payment will be made in a continuous string of numbers, two
digits per month. This is simple and fast but, since it can sometimes lead to
mistakes on input, the program reprints the months apparently entered
with a separator between each so that the user can check the input.

Lines 3 I 10-3 130: The file of payments is kept in order of the day of the
month on which payment is made. In this section the program scans the file
from the highest numbered day downwards. If the day of the current entry
is lower than the day of the item in the file then the whole file from that
point is moved up one place and the next item down the file is examined. In
this way, by the time the program finds the correct position in the file for
the new entry, a place has already been made for it.

Line 3 140: The month(s) in which the payment will actually be made are
recorded in a string of 12 characters. The string begins as 12 0s and then the
positions corresponding to the desired months are set to I . If you wish to
minimise the amount of space taken by the program it is perfectly feasible
to use only two bytes for this, setting individual bits to represent the desired
months - the trade off being that more time is required to translate this
kind of representation.

Line 3 170: If the item is meant to be a debit (i.e. a payment out), then the
amount of the item is multiplied by - I .

34

Chapter 2 Managing your money

Testing Module 2. 1.4
You should now be able to input payment items together with their
associated months and days of payment. Though you cannot yet display
them, you can stop the program and check that the relevant sections of the
arrays A and A$ contain the payment details in order of day of payment.
At A (0,PAYMENTS) should be 999, a dummy entry to ensure correct
insertion of the first item.

MODULE 2.1.5
�000 REM************************
�0 1 0 REM COMP I LE STATEMENT
!5020 REM************************
�030 LET SUM-0
!5040 LET F•- " STATEMENT '" , LET P 1 - 1 , GOSUB 7
'"'"
�";'�':;' Cl

I NPUT "" NUMBER OF' MONTH F'OR STATE MEN

!5060 F'OR Q l - 1 TO Q - l • FOR I -0 TO PAYMENTS
-1 ' I F' MI DIii< A•< I , 1 :>, Q 1 , 1 :>< > "" 1 " THEN GOTO
!5090
!5070 LET SUM-SUM-A< I , 0 :>
!5080 NEXT I • NEXT Q 1
!5090 CLS • LET F*-MONTH*< Gl - 1 > • LET P 1 -0 • GOS
UB 7000
!5 1 00 PR I NT " BALANCE C/F " , • PR J: NT TAB< 24 > "
" ; • I. F SUM<0 THEN PR I NT CHR•< 1 9 1 :> , ELSE P

R I NT CHR•< 1 !59 :> ,
!5 1 1 0 PR I NT US X NG " ££££ . ££ " , SU M ,
!5 1 20 F O R x -0 TD PAYMENTS-1
!5 1 30 XF M X D•< A•< I , 1 :>, Q, 1 :>< >" 1 " THEN GOTO

!52 1 0
!5 1 40 PR J: NT US J: NG " :£:£:£ " ; A < X , 1 :> J , X F A < I , 0 ::,
< 0 THEN PR X NT CHR•< 1 9 1 > , ELSE PR J: NT CHR•<
1 !59 ::, ;
!5 1 !50 PR J: NT A•< X , 0 :> ;
!5 1 60 PR J: NT TAB< 1 6 ::O J • X F A< X , 0 > < 0 THEN P R J:
NT CHR•< 1 9 1 :) ; E L S E PR J: NT CHR•< 1 !59 :> ;
!5 1 70 PR I NT US I NG " ££:££ . £ £ " ; A< J: , 0 :> ,
!5 1 80 LET SUM-SUM-A< I , 0 :> • I F SUM<0 THEN PR
I NT CHR.< 1 9 1 :> , ELSE PR I NT CHR•< 1 !5 9 :) ;
!5 1 90 PR I NT US I NG " ££££ . £:E: " J SUM ,
!5200 X F X NKEY•- " " THEN GOTO !5200
!52 1 0 NEXT J: • PR I NT , :I NPUT " --nt.-.- TO CONTX
NUE " , X
!5:2:20 RETURN

This module prints out a statement for any particular month specified. A
balance is carried forward from previous months in the same calendar
year.

Commentary

Lines. 5060-5080: These two loops scan each entry in the file for any
payments occurring in the months prior to the month specified for the
statement. Any such payments are added to the variable SUM. It may
comfort you to know that when this program was first entered the variable
used was named TOT AL and the line gave a syntax error report. After a
long time spent cursing the Dragon I realized that variable names which
corresponded to the first two letters of Basic words confused ·the poor
beast.

35

The Working Dragon

Lines 5100-5110: Unfortunately the Dragon cannot print text in different
colours, or debit i tems could be printed in red. To make up for this a yellow
square is used to delineate columns for credit items and a red square for
debit items, this particular item being the balance carried forward.

Lines 5120-5210: This loop prints the details of day of payment, name of
payment, amount of payment and the running total of the account,
provided that the relevant character in A$(1) is I rather than 0. The account
makes use of the PRINT USING command to ensure that pence are
correctly printed (otherwise £!0. 70 would be rendered IO. 7). The
presentation of the account is in columns and the squares making up the
column are red or yellow according to whether a debit or credit item is
being printed. The coloured squares are obtained by reference to the chart
on page 138 of the Dragon manual.
Note that items are printed one by one and to obtain the next item it i s
necessary to depress ENTER: the purpose of this is to prevent items being
printed and scrolled off the screen before they can be examined if there is
more than one screenful of data.

Testing Module 2.1.5
You should now be able to enter some data and obtain a statement for any
month. In the case of months for which there are no payments registered
the balance carried forward will be printed. After the last item of the
month's account, pressing ENTER again will return to the menu.

MODULE 2 . l .6

4000 REM************************
40 1 0 REM DELETE PAYMENTS
4020 REM************************
4030 FOR I-0 TO PAYMENT S- l • CLS
4040 P R I NT , P R J: NT "PAYMENT• " ; A•< J: , 0 ::>
40�0 PRINT, PR I NT "AMOUNT • •• , A< I, 0 ::>
4060 PRINT • PRINT "MONTHS • " >
407"0 FOR J - 1 T O 1 2 • IF MID•< A*< I , l ::> , J , 1 ::>
-" 1 °• THEN PRINT STR•< J ::> 1 • PRINT " ..-- ••)
4080 NEXT J
40:51'0 PRJ:NT • PRJ:NT • PRJ:NT "DAY OF PAYMENT • "
) A< J: , l ::>
4 1 00 P R J: NT, P R J: NT "COMMANDS , " , , " l ::>' ODD
' DELETE" , " 2 ::>' Z Z Z ' GIUIT" , , " 3 ::> ' ENTE
R ' FOR NEXT ITEM"
4 1 1 0 INPUT GI• • IF Cl*-"DDO •• THEN FOR J - J: T
0 PAYMENTS- 1 • FOR K-0 TO 1 • LE T A• < J , K ::>-A$
< J- 1 , K ::> • LET A< J , K ::>-A< J- 1 , K ::> • NEXT K • NEXT
J • LET PAYMENTS-PAYMENTS- 1 • RETURN
4 1 20 XF QIIII-" • • THEN NEXT J:
4 1. 30 RETURN

This module allows individual payments to be examined, together with
their associated data and, if necessary, to be deleted from the file.

Commentary
Line 4110: An example of the usefulness of IF statements when properly
combined with multi-statement lines. This whole section of eight
consecutive statements is only executed if the user inputs DDD.

36

c.,·hapter 2 Managmg your money

Testing Module 2. 1. 6

You should now be able to delete items from the file.

MODULE 2 . 1. 7
6000 REM************************
60 1 0 REM DATA FILES
6020 REM************************
6030 MOTOR ON AUDIO ON PRINT INPUT " POSI
TION TAPE THEN PRESS ent�r < MOTOR IS ON
:," ; Q ,:t; MOTOR OFF

6040 PRINT INPUT " PLACE RECORDER IN CORR
ECT MODE THEN PRESS e-nter " ; Q.$
60!'30 PR I NT P R i t.,.T ' " FUNCTIONS A','AILAE<LE ",

" :1 >SAVE DATA " , , " 2 >LOAD DATA" I NPUT "WH T C
H D O YOU REQ UIRE " ., Q • ON Q GOTO 6070,6 :1 ::30
6060 RETURN
6070 MOTOR ON • FOR I - :1 TO :10000 NEXT I
6080 OPEt-� "O" , £- :1 , "BANt<�ER "
6090 P R I NT£-:1 . PAYMENTS
6 :1 00 FOR I -0 TO PAYMENTS PR I NT£- :1 , A$C T 0
>, A$< I .. :1 :> .. A< I , 0 >, A< I .• 1. > , NEXT I

6 1 10 CLOSE£- :1
6 1 20 RET l _ lRN
6 1 30 PCLEAR :1 • CLEAR t. 0000 LET FLAG-:1 GOT
0 2040
6 :1 40 OPEt-� "I". £-1. , ' ' BAt-�KER"
6 1 50 INPUT£-l. ,PAYMENTS
6 160 FOR I =0 TO PAYMENTS I NPUT£- :1 ,A$C T 0
-� . A!!li(:t • :1 :, • A< :t • 0 :, • A< :t • l :>

61. 70 NE>-:T I
61. 80 CLOSE£- !.
6 1 90 GOTO l.000

A standard data-file module.

Commentary
Line 6130: The use of the variable FLAG has already been discussed but it
is worth pointing out that the only reason that the initialisation module is
actually called is the loading of the month names into MONTH$. Other
than this it is often more economical simply to dimension the arrays in the
data-file module itself.

Testing Module 2 . 1 .7

You should now be able to input data, store it on tape and recall i t for
subsequent use. If this module functions properly the program is ready for
use.

Summary
This straightforward program raises some interesting questions about the
degree of sophistication required to make a program useful. Inputting the
months during which a particular payment is to be made is, in some ways,
rather crude compared to specifying whether the payment is to be made
quarterly or annually or whatever and letting the program insert the
payment in the relevant months. Such an added facility would be easily
possible but it would add considerably to the length of the program and it
would reduce the degree of flexibility inherent in simply typing in the
months. When designing a program you will need to be constantly aware of

37

The Working Dragon

this tension between what is worth doing automatically and what it is better
to allow the user to do - the answer may well vary from user to user but
complexity simply for the sake of it can be costly in terms of memory and
can actually reduce the usefulness of a program.

Going Further
1) The deletion module is extremely crude in that it only allows the user to
page through the items one by one. What about adding a facility which
would allow the user to specify a jump backwards or forwards in the file,
thus making it easier to access items towards the end of the file.
2) The program is set up on the basis that the financial year begins in
January. It would be more useful if the user could specify when the
financial year should begin and the program would then scan the entries
from that time to produce the balance carried forward in the printed
account. This would allow the user to keep accounts for the last three
months , say, even in January and February.

2.2 ACCOUNTANT

This program won't actually cook the books for you , but it will make them
very much easier to keep and present them in a neat format whenever you
wish, with provision for single items, main headings and sub-headings in
the printing of the actual accounts.

MODULE 2 .2 .1
7000 REM************************
70 1 0 REM FORMAT TITLES
7020 REM************************
7030 LET P 2 - 1 4-INT< LEN< F• >-2 >
7040 PRINT � 32*P 1 +P 2 , STRING•< LEN < F$ >+2 ,
CHR•< 1 47 > >
70�0 PRINT � 32*< P 1 + 1 >+P2,CHR•< 1 � 9 > ;
7060 PRINT F• • CHR• < 1 �9 >
7070 PRINT � 32*< P 1 +2 >+P 2 , STRING•< LEN < F$
>+2, CHR•< 1 :56 > >

7000 RETURN

Standard title format module.

MODULE 2. 2. 2

38

6000 REM************************
60 1 0 REM DATA F l LES
6020 REM ***********************
6030 AUD l O ON• MOTOR ON• INPUT " POSITION T
APE, THEN PRESS .-nt..-r. < MOTOR IS ON >" ; c;:i•
60:50 MOTOR OFF • INPUT " PLRCE RECORDER INT
0 CORRECT MODETHEN PRESS ..-nt...-r . " , Q•
6060 PRINT " 1 >SAVE DATR" , , " 2 >LOAD DATA"
INPUT "WHICH DO YOU REQUIRE • " ; (;:!
6070 ON Q GOTO 6090,6 1 70
6000 RETURN
6090 MOTOR ON• FOR I- 1 TO 1 0000 • NEXT I
6 1 00 OPEN"O " , £:.- 1 , " ACCOUNTS"'
6 1 1 0 FOR I-0 TO 1
6 1 20 PRINT£:.- 1 , C<I >
6 1 30 FOR J-0 TO C< I >- 1
6 1 40 PRINT:£- 1 , A•< I , J > , A< I , J :>
6 1 �0 NEXT J , I• CLOSE:£- 1 • RETURN

Chapter 2 Managing your money

6 1 7'0 OPEN " I " ., £- 1 ., "ACCOUNTS"
6 1 90 FOR I-0 TO 1
6 1 51'0 I NPUT£- 1 . CC I >
6200 FOR J-0 TO CC I> - 1

62 1 0 I NPUT£- 1 ., A•C I ., J> ., AC I ., J>
6220 NEXT J ., I • CLOSE £ - 1 • RETURN

This is entered at this point in order to point out that the easiest way of
entering this, and the previous module, is simply to enter a program which
already contains them and then making any necessary changes to the
variables which are to be saved. Since you now have a program, Banker,
with both modules, you can save yourself considerable time by loading that
and deleting up to line 5999 (DEL-5999).

You may also find it an advantage to have entered this particular module
first in that once you have successfully entered the modules which load
data into the main file, you will be in a position to save some data so that
when data is lost with the correction of mistakes or the entry of new lines
(unfortunate habit, that), you can simply reload from tape rather than type
it all in again.

MODULE 2.2.3
1 000 REM************************
1 0 1 0 REM MENU
1 020 REM************************
1 030 CLS , LET F•-''ACCOUNTANT" • LET P 1 - 1 • GO
SUB 7'000
1 040 PRINT • PR I: N T "COMMANDS AVAI LABLE • "
1 0�0 PR I N T " 1 > I NPUT NEW HERDINGS "
1 060 PR I NT " 2>CHANGE AMOUNTS/DELETE ITE
MS "
1 07' 0 PRINT " 3 >P R I N T ACCOUNTS"
1 080 PR I NT " 4> I N I T I ALISE ACCOUNT S "
1 051'0 P R I N T " ':5>DATA F I LES"
1 1 00 P R l: N T " ,S >STOP"
1 1 1 0 PRIN T • INPUT "WHICH DO YOU REQU IRE" >
Z • CLS
1 1 20 I F Z<4 AND Z >0 THEN GOSUB 2000
1 1 30 CLS
1 1 40 ON Z GOSUB 2�00 ., 4000 . �000 ., 1�00 ., 6000
., 1 1 6 0
1 1 �0 CLS• GOTO 1 000
1 1 60 CLS • LET F•-"ACCOUNTAN T " • LET P 1 -6 • GO
sue ?"000
1 1 7'0 END

Standard menu module.

MODULE 2.2.4
1 �00 REM************************
1 � 1 0 REM I NIT I AL I SE
1 ':520 REM************************
1�30 PCLEAR 1 • CLEAR 1 0000
1 �40 D I M A•c 2 . 1 00 :::, , Ac 2 . 1 00>
1�':50 GOTO 1 000

Initialises program arrays. Note that this module must be called before
data files can be loaded from tape since the data file module in this program
does not clear the memory and initialises the arrays.

39

The Working Dragon

MODULE 2.2.5

:2000 REM************************
20 1 0 REM CREDJ:T/DEBIT
20:20 REM************************
:2030 PRINT (R 7'*32-+-3> · · oo YOU l.JANT • 1 :>CRED
J T ""
:2040 PRINT TAB<: 1115 :>":2 :>DEB J:T"
:20�0 J:NPUT C D • LET co-cD - 1 • RETURN

Unlike the previous program, there are a number of functions in this
program which require to know whether the debit or credit side of the
accounts is being addressed. The input which specifies this is therefore
made a separate module.

Testing Module 2.2.5

Before moving on to the main body of the program you may wish to check
that the modules entered so far are functioning correctly. The menu should
work for the data file option and should call up the present module for any
function from I to 3. Menu function 6 should also be available.

MODULE 2.2.6

:2�00 REM************************
2� 1 0 REM INPUT J:TEMS
:2�:20 REM************************
2�30 LET F• - "NEW J:TEMS" • LET P 1 - 1 • GOSU8 7'
000
:2�40 PRJ:NT " J: S THE J:TEM , 1 :>A S J: NGLE J:TEM

2��0 PRJ:NT TAB<: 1 3 ::. " :2 ::, A MAIN HEA D J: NG"
:2�60 PRJ:NT TAB< 1 3 :>" 3 :> A SUB-HEAD J: NG"
2�7'0 INPUT " " 0 " T O QUIT FUNCTION"; TYPE
:2�00 J:F TYPE-0 THEN RETURN
:2�90 J:F TYPE-3 THEN GOTO 3�00

The input of items to the program is done under three types of heading:
main headings, sub-headings and single items. Their nature will be
explained under the sections that refer to them. The purpose of this module
is simply to have the user specify which is about to be input.

MODULE 2.2.7

40

:3000 REM************************
3���D��� S J: NCLE ITEM OR MAJ:N

30:20 REM************************
3030 LET Q-0
�";'-::!-".;'Q:;R J: NT G!: 9'*32> " " � , INPUT "NAME OF J: TE

30�0 IF TYPE< >:2 THEN PRINT G!: 1 1 *32 ,, "" � • I
NPUT '"AMOUNT FOR ITEM , "; Q
3060 PR J: NT (R 1 3*3:2 ,, "" ; , INPUT "J:S T H l: S CO
RRECT? <: Y/N :>" ; R•
307'0 IF R•< >"Y" THEN FOR I-9 TO 1 3 • PRINT

(R 32* 1: ,, ""• NEXT , GOTO 3040
3080 IF TYPE-2 THEN LET CJ•-":+:"-+-Q• ELSE L
ET Q __ .. " +CJ•
3090 LET A• < co ,, c<: co ::. >-Q•
3 1 00 LET A< CO ,, c<: co ::, ::,-Q
3 1 1 0 LET C<: CD >-C< CD :>-+- 1
3 1 20 CLS • GOTO 2�20

Chapter 2 Managing your money

This module accepts the input of two different types of items, main
headings and single items. Main headings are general categories which will
have no amounts attached to them in the accounts, they will serve as
'paragraph headings' for a list of items which fall under that particular
heading. In household accounts, a main heading might be CAR and it
might be followed by sub-headings relating to tax, insurance, maintenance
etc. Single items are items which are neither main headings nor items which
fall into the groups which the main headings label - they are 'one off'
items.

Commentary
Line 3050: Main headings do not have amounts directly attached to them in
the accounts.

Line 3070: If details entered are incorrect, this line clears only that part of
the screen containing those details - otherwise we would have to return to
the previous module to reprint the prompts on the top half of the screen.

Line 3080: The three types of item are labelled in the file which contains the
accounts by single characters which are tagged onto the front of the item
names (these characters are never printed, they are there for the program's
use only). The symbol for a main heading is • and that for a single item is a
space. Note how the use of ELSE saves us another IF statement.

Lines 3090-3110: The names of items (and the identifying tags) are stored
in the array A$, on the credit or the debit side according to the value of CD.
Similarly the value attached to the item is stored in the array A. The
number of items on each side of the arrays is recorded in another array
named C. If you are observant you will have noted that nowhere did we
dimension an array called C. Here we are making use of the fact that
whenever an array is referred to (and the Dragon can tell an array is being
referred to because a subscript will be tagged onto the end of the name) the
Dragon assumes until it is told otherwise that the array has I0elements. So
if you want to use an array with less than 10 elements you don't need to
declare it in a DIM statement.

Testing Module 2.2. 7
You should now be able to input main headings and single items and main
headings. You cannot easily display what you have input but you can check
in direct mode that the item names have been stored, that they have the
correct indicator tag preceding them and that the correct value is attached
to them in the corresponding element of the array A (the correct value for a
main heading is zero).

41

The Working Dragon

MODULE 2.2.8

;3500 REM************************
.:35 1 0 REM SUB-HEADING
3520 REM************************
3530 PR I NT (I! 9*32., " " > • INPUT " NAME OF M A J:
N HEADING • " > Cl­
.:3540 LET ci•-"*"+Q•
3550 FOR 1 -0 TO C< CD >- 1 • IF A• < CD ., I >< >Q•
THEN NEXT I , PR I NT , PR I NT •• SORRY ., NO HEAD I
NG OF THAT NAME . ",FOR I- 1 TO '!5000 , NEXT •
RETURN
3560 LET PLACE-I-+-1
:3570 PRINT a! 1 1 *32 ., • • .. > , INPUT "NAME OF SU
B-HEADING, " > Q•
:3500 PR I NT a! 1 3*32 ., " " > , INPUT "AMOUNT FOR

SUB-HEADING • " ; Q
���?R:RINT • INPUT "ARE THESE CORRECT C: Y/N

3600 IF R• < >" Y' " THEN FOR J:- s;. TO 1 3 • PRIN
T 32*I ., " " • NEXT • GOTO 3570
36 1 0 LET Q• - "• " +Q•
3620 FOR I-C< CD > - 1 TO PLACE+ 1 STEP-1
3630 LET A• < cD ., I >-A• < cD ., I- 1 >
3640 LET A< CD ., I >-A< CD ., I - 1 >
3650 NEXT I
3660 LET A•< CD ., PLACE >-Q•
3670 LET A< CD ., PLACE>-Q
3600 LET C< CD >-C< CD > -+- 1
3Gs;.0 CLS• GOTO 2520

This module accepts the third category of item which the program
recognises - sub-headings.

Commentary
Lines 3530-3550: In this section the user first inputs the name of the
relevant main-heading and to this is added the identifying tag •, which is
how the main heading will be recorded in the file. The program now works
through the file comparing the specified main heading with those that are
actually.stored already. Note that in checking that something is present in a
file it is always easier, in fact, to check that it is not. For this purpose all that
is needed is a one line loop as line 3550. If you remember what was said
earlier about the use of IF statements in rriulti-statement lines you will
realise that the end of this loop will only be reached if the item being
searched for is not present. If the item is found then the program execution
will automatically default to the next line since the condition attached to
the IF statement has not been fulfilled.

Line 3560: If the main-heading is found, the variable PLACE is set to the
position following it in the file - this will be the position of the
sub-heading.

Lines 3620-3680: The items in the file, from position PLACE upwards,
are shifted by one space to make room for the next item and the new item is
inserted into position PLACE, with the relevant side of C being
incremented to record the new item.

42

Chapter 2 Managing your money

Testing Module 2.2.8
As with the last module, it is difficult to test fully until the display module is
entered, but you should be able to enter sub-headings, check that
main-headings are present and to examine in direct mode that the data has
been placed into the file correctly. If all seems well then it would be
advisable to save a specimen set of accounts onto tape to save time in
testing the display and deletion modules.

MODULE 2.2.9

:S000 REM************************
�0 1 0 REM PRINT ACCOUNTS
:50:2:0 REM************************
�0::30 IF CD-0 THEN LET F•-"CREDIT " ELSE L
ET F--··DEB:IT" • LET P 1 -0 • Gosue 7"000
:5040 LET TTOTAL-0
�0�0 LET STOTAL-0
�0G0 FOR I-0 TO C< CD >- 1
�070 LET TTOTAL-TTOTAL-A< CD,I >
�080 IF LEFT•< A•< CD, I ::,, 1 >-"•" THEN PRINT

TAB< 2 > >
:509'0 PRINT U S X NG " % % " ; MID•<
A•< CD, I > ,. 2 > >
::5 1 00 IF LEFT•< A•< CO, X ;:, ,. 1 >-"*•• THEN PRINT
• GOTO � 1 �0

� 1 1 0 IF A< C D ,. I >-0 THEN GOTO � 1 �0
� 1 20 IF LEFT•< A•< CO ,. I >, 1 >< >"••• THEN PR l: N
T TAB< :2:� > ; ELSE PRINT TAB< 1 B > >
:5 1 S0 PR J: N T USING ''££££ . ££ '' ; A< CD , I > ;
� 1 40 l:F LEFT•< A•< CD., I > ,. 1 >-"•" THEN LET S
TOTAL-STOTAL-A< CD,I >• PR J: NT
� 1 �0 J: F STOTAL-0 OR LEFT•< A•< CD,I+ 1 > ,. 1 >­
" •" THEN GOTO �200
� 1 G0 PRINT TAB< 1 8 >STRING•< 7 ,. .. _ .. >
� 1 7"0 F"R l: NT TAB< :2:� > J
:5 1 90 PRINT USJ:NG " £ ££ £ . £:£."; STOT A L ;
� 1 90 L E T STOTAL-0
:S:2:00 IF INKEY•-"" THEN GOTO :S:2:00 ELSE NE
XT X
:52 1 0 PRINT TAB< 2� >STRING•< 7, ,. _ ., > >
:5220 F"R X NT "TOTAL • " ;
:5230 PRJ:NT TAB< :2::S > ;
:S:2:40 PR J: NT USING " ££££ . £:£." ; TTOTAL
�:2:�0 l: NPUT "PRESS • ENTER" TO QU l: T • " J ra•
�:2:60 RETURN

Most display modules for complex data are themselves complex, and this
one is no exception. The reason for this is that rather than working on an
elegant and simple set of principles which can be easily programmed into
one or two lines, such modules work with a mass of different rules and
qualifications which reflect the way in which you wish to transform the
data into a display - some placed here, some there, some inset, some on a
new line, all according to a variety of different conditions.

Commentary

Line 5030: The heading printed depends upon the value of CD.

Line 5070: Throughout the printing of the accounts, a running total of the
sums printed so far is stored in the variable TTOT AL.

43

The Working Dragon

Lines 5080-5090: If the item to be printed is a sub-heading (identifying tag
$) then it is inset two spaces before the name of the item is printed. Note the
use of the PRINT USING OJo formatting command here: this prints the
string specified in a space as long as the total distance from the first OJo to
the second OJo (i.e. the number of spaces plus 2). If the string is too long it is
truncated, if it is too short it is padded out with spaces.

Line 5100: If the item is a main heading a spacing line is printed to make it
stand out.

Line 5 120: The amounts associated with sub-totals are printed at column
18 on the screen, other amounts are printed at column 25.

Line 5 130: This PRINT USING command means that pence will always be
printed but that the program can only handle amounts up to £9,999.99. Its
effect on spacing is similar to the previous PRINT USING command
except that the padding added if the number is too short is added to the
beginning of the number being printed.

Line 5140: If the item being printed is a sub-heading, then the amount
associated with it is added to the variable STOT AL, which serves as a
record of the sum of the items under any one main heading.

Lines 5 160-5180: At the end of the group represented by a main heading,
the sub-total is printed in the main column.

Line 5200: Items are printed one at a time in response to the pressing of any
key.

Lines 5210-5240: When all items have been printed, the overall total for
the particular side of the accounts in question is printed underneath the
main column.

Testing Module 2.2.9
Recalling the set of data which you stored on tape, you should now be able
to see it presented in the format described above by calling this module.
Don't forget to initialise the program before trying to load the data!

MODULE 2.2.10

44

4000 REM************************
40 1 0 REM CHANGES ANO DELETIONS
4020 REM************************
4030 FOR x -0 TO C< CD >- 1
4040 LET FS- "CHANGE OR DELETE ' , LET P 1 -0 •
GOSUB 7000
40�0 XF LEFTS< AS< CD ., X > . • 1 >< :> " S" THEN PR X N
T Cl!: :S,,S:, ""
4060 P R X NT G? 1 28 , " "
4070 XF LEFT•<A•<CD,X > , 1 >< > '' $ '' PR r N
T @ 96,M X DS<A•<CD, X >,2 > �

Chapter 2 Managing your money

4080 I F �EFT•C A$C CD . I>, 1 >- '' $ '' THEN PRINT
IJi! 1 :28, MID•< f=I ... < CD , I> • :2 > ;

4090 IF AC CD . I>-0 THEN GOTO 4 1 20
4 1 00 PRINT TABC 1 6 > 1
4 1 1 0 PRINT USING " ££ £ £ . ££" ; A<CD , I >
4 1 20 PR I NT � 1 0*3:2 ., " > • ENTER " -NEXT ITE M "
4 1 30 F'- R I t-lT " > ·' CCC • -CHANGE AMOUNT"
4 1 40 PRINT " > • zzz · -GIUIT F'"UNCT l ON"
4 1 �0 PRINT " > ' DD D · -DELETE ITEM"
4 1 60 INPUT G!*
4 1 7"0 IF Q•-·"ZZZ" THEN RETURN
4 1 80 IF Q$- " DD D " THEN GOSUB 4�00•RETUR"N
4 1 9'0 IF Q,_,_ ., ., Tt-4EN (;OTO 427"0
4200 F""OR J- 1 0 TO 1 4- • PRINT lli! J*32 .- " " • NEXT
4 2 1 0 PRIMT a! 1 2:+:3:2 ., "" ; , INPUT "AMOUNT TO
BE ADOED • " ; Q
4:220 PRINT• INPUT " IS Tt-4AT CORRECT <: V....-N> "
; Rm
4230 FOR J- 1 1 TO l. 4- • PRINT IJi! J:«32, " ' ' • NEXT
4240 IF R•- ''N'' Tt-4EN GOTO 42 1 0
42�0 LET A<CD , I >-AC CD,I>+Q
4260 GOTO 4040
4270 NEXT I • RETURN

The purpose of this module is to allow the user to examine, change or delete
individual items. Once having entered an item, such as 'mortgage' in
domestic accounts, this module would be used to add any subsequent
payments (or to reduce the payments) rather than entering the item afresh
for each occurrence.

Commentary
Lines 4050-4110 : The item is displayed, together with its main heading if it
is a sub-heading.

Lines 4 200-4250 : Changes to the amount associated with an item are
simply made by inputting the extra sum to be added (or subtracted) from
the existing amount.

Testing Module 2.2. JO

You should now be able to display the items in the file one by one and to
amend the amounts associated with each.

MODULE 2.2.11
4�00 REM************************
4� 1 0 REM DELETE ITEM
4�20 REM************************
4�30 LET PLACE-I • LET GROUP- l.
4�40 IF LEFT•< A•<CD .- PLACE > , 1 >< >"*" THEN
GOTO 4�00
4��0 LET GROUP-0
4�60 LET (;ROUP-GROUP+ l
4�7'0 IF LEFT*< A•< C D • F'Lf=ICE-+GROUP >. 1 >- " •"
1"HEN GOTO 4�60
4�80 FOR K-PLRCE TO CC CD >-GROUP- 1
4�90 LET R<CD . K>-R<CD , K+GP.OUP >
4600 LET R•< CD,K>-R•<CD . K-+GROUP >
46 1 0 NEXT K
4620 LET CC CD >-CC CD >-GROUP
4630 R:ETUP.N

The function of this module is to carry out the deletion of a particular item
when it is specified in the previous module.

45

1111;1 vvu,,.,my un1yon

Commentary
Lines 4530-4620: The reason this module is more complicated than other
deletion modules we have entered is represented by the variable GROUP,
which is needed to record the number of items that have to be deleted at any
one time. The reason that there may be more than one item to be deleted is
that the user may have specified the deletion of a main heading, in which
case all the sub-headings associated with that main heading are also to be
deleted.

Testing Module 2.2. 11
If this module is successful in deleting items, including main headings and
all the associated sub-headings, then the program is correctly entered and
ready for use.

Summary
By now you should be becoming familiar with the techniques involved in
adding and deleting items to files without disturbing the overall
orderliness. What may have been new in this program is the sheer fiddliness
of correctly formatting large amounts of data on the screen. It is worth
reviewing the methods used before you continue, since in the next program
we shall be displaying far more complex data than anything met here.

Going Further
I) One useful extra facility would be a simple module to calculate and
perhaps even print the balance between the two sides of the account.
2) As in the previous program, if you are going to want to store very large
numbers of items in this program then you will also want to change the
module which displays the items one by one, to allow a more rapid
movement through the file.

2.3 BUDGET

Finally in this trio of financial programs we turn to the most complex
program you will encounter in this book. Entitled Budget it is a powerful
and flexible financial tool which enables the user to plan finances over a 12
month period and to examine the consequences of 'what . . . if' decisions
about income and expenditure. Intelligently used, it can provide some
surprising insights into a family's finances over the year to come - quite
apart from illustrating the problems of working with large bodies of
numeric data. The arrays used by the program contain some 650 separate
numeric values.

46

Chapter 2 Managing your money

MODULE 2.3. 1
6000 REM************************
60 1 0 REM DATA FILES
6020 REM ************************
60.:30 AUDIO ON MOTOR ON • XNPUT "POS T T T ClN T
APE Tt-lEN PRESS e .. .- < MOTOR X s ON > .. ; Cts '
MOTOR Ot='F
6040 l NPUT "PUT RECORDER INTO CORRECT MO
DE THEN PRESS �nt.-r "' ; Q•
60!50 PR XNT " FUNCTIOt-.lS f'=IVF'=IILABLE , " . '" 1 >SAV
E DATA" . • "2 >LOAD DATA" INPUT "l--JHICH 00 Y
OU REQUIRE " ; Q • ON Q GOTO 607 0 , 627'0
6060 RETURN
607'0 MOTOR ON , FOR 1 - 1 TO 1 0000 , NEXT X • OP
EN '' O '' , E- 1 - ''BWDGET''
6090 PR XNTE- 1 . MO . Y
6090 FOR 1 - 0 TO 1 1
6 1 00 PRINT £ - 1 ,INCOME<0 , I > , INCOME< t . I> , S
UPP< 0 . X > . SUPF"< 1 • l: >
"5 1 1 0 NEXT l:
6 1 20 F'Rl:NT£- 1 . t-1<0 > . N< 1 >
"5 1 30 FOR 1 -0 TO N<0> - 1
6 1 40 PRINT£ - 1 . PAYMENT•c e . I >
6 1 !50 FOR J-0 TO 1 1
6 1 60 PRINT£- 1 - PAYMENT< 0 , l . J>
6 1 7'0 NEXT J
6180 NEXT I
6 1 90 FOR 1 - 0 TO N< 1 >- 1
6200 PRXNT£- 1 , PAYMENT$<1 . I >
62 1 0 FOR J-0 TO 1 1
6220 PRINTE- 1 , PAYMENTS< 1 . I
62:30 NEXT J
6240 NEXT I
62�0 CLOSE £ - 1
6260 RETURN
627'0 CLEAR !5000 • PCLEAR 1 • LET FLAG= l • GOTO

1 �40
6290 OPEN " J: ' • ,. £- 1 . " BUDGET"
6290 INPUTE- 1 , MO , Y
6:300 FOR X - 0 TO 1 1
63 1 0 INPUT £- 1 ,. INCOME< 0 ., X > , INCOME< 1 . I > ,. SU
PP<0 , X > , SUPP<1 ,. t >
6320 NEXT J:
6:3:30 INPUT£- 1 . N<0 > . N< 1 >
6340 FOR x -e TO N< 0>- 1
63�0 XNPIJT.£:- 1 , PAYMENTS< 0, X >
6:360 FOR J-0 TO 1 1
6370 INPUT£- 1 , PAYMENT<0 , I , J >
6390 NEXT J
6:390 NEXT I
6400 FOR x -0 TO N< 1 > - 1
64 1 0 XNPUT.£:- 1 ,PAYMENTS:< 1 ,. J: >
6420 FOR J-0 TO 1 1
6430 ZNPUT£ - l , PAYMENTSC 1 ,. X , J >
6440 NEXT J
64:::50 NEXT X
6460 CLOSE£:- :l
647"0 FOR H-0 TO 1 GOSUB 2�00 • NEXT
6480 GOTO :1 000

The length of this data-file module should be sufficient to convince you of
the complexity of the program. Budget, more than any other program in
this book , benefits from the early saving of some data to tide you over the
innumerable pitfalls of entering a program as long as this.
MODULE 2.3. 2

�000 REM************************
70 :1 0 REM FORMAT T X TLES�
7020 REM************************
70:30 LET P2- 1 4 -J:NT<LEN< F• >/2 >
7040 PRINT � 32*P l +P2 ,- STRXNGS<LEN<F� >+2,
1 �0 >
70�0 PRINT � 32*< P 1 + 1 >+P2. CHR•<1�0>+F•-c
HR•< :1 �0 ::,
7060 PRINT � :32*<P 1 +2 >+P2 ,. STRINGS<LEN<F•
>+2 ,- 1 �0 >
7070 LET P:2-0
7000 RETURN

A standard title-formatting module.

47

1 ne Work mg Uragon

MODULE 2.3 .3

3=:;00 REM************************
::3'=> 1 0 REM QUEST I ONS
::3=:;20 REM************************
:3-=-:30 PRINT � P 1 *32 , STR ING•< 32 ,
::3=:;40 PRINT IJi! P 1 *�2�P2 , PS �
:;3!5!50 INPI.JT Q'$
:3!!5'50 PR INT Oi! 4 1 6 , " > > "" ; Q!li ; "" < < ••
:3�7'0 PR I NT Oi! 448 ,·•• " ; , t NPUT •• PRESS
TO CONF J: RM '· � F<::S
:3=:;90 PRINT IJi! 4 1 6 . STRING .. u::: G � , " '" >
::3=:;90 IF R•< > •• •• THEN GOTO :3!5:30
::3600 LET PZ-0 RETURN

You may be struck at first sight by the similarity between this module and
the last and indeed the functions of the two are quite similar. This one,
instead of printing a decorative heading at some desired place on the
screen, prints a prompt, allows for its confirmation or otherwise and
returns the resultant input to the main program. Handling almost all of the
program's requests for input by this one module saves scores of lines in the
main program.

Commentary

Lines 3530-3550: From these three lines it will be clear that three variables
are necessary for the proper functioning of this module: PI which is the
line on which the prompt is to be printed, P2 which is the position along the
line and P$, which is the actual prompt. The module automatically clears
the line on which the prompt is to be printed. In this program P2 is always
left at zero but there is no reason why this should be so if the module is used
in other programs.

Lines 3560-3590: Whatever is input by the user is redisplayed at the
bottom of the screen with a request for confirmation. Confirmation is
given by pressing ENTER with no character input. Inputting an actual
character is interpreted as meaning that the response to the prompt is not
confirmed, in which case the prompt is printed again.

Testing Module 2.3.3

This module may be tested on its own by defining PI and P$ in direct mode
then entering GOTO 3500. P2 does not need to be defined.

MODULE 2.3.4

48

1 000
1 010
1 020
1 0:30
OSUB
1 040
1 0=:;0
i�60

1 070
1 080
1 05>0
1 1 00

REM************************
REM MENU
REM************************
CLS • LET F•-"HOME BUDGET •• , LET P 1 -0 c;;
7000
PR INT "FUNCT IONS AVA I LABLE • "
PR INT '' 1 > IN I T I AL I SE ' '
PR INT " 2 >RESET HYPOTHETICAL F l'. GURE

PR I NT •• ::3 > D I SPLAY MONTHLY FINAL YS I S"
PR INT '' 4 >CH�NGES''
PRl'.NT '' =:; >NEW BUDGET HEAD l'.NGS ''
PRINT 6>DELETE BUDGET HEADl'.NG"

Chapter 2 Managing your money

1 1 1 0 PRINT '' 7 ::0RESET MONTH''
1 1 :Z:0 PRINT " '9 ::0DATA F"ILES "
1 1 :30 PRINT " 9 ::OSTOP "
1 1 40 PR I NT• INPUT " WHICH DO 't'OIJ REQU J: RE "
, z • CLS
1 1 '50 IF" Z< > 1 AND Z< >:Z: AND Z< >7 ANO Z< >e

AND Z< >9 THEN GOTO 1 1 80
1 1 60 ON Z GOSU0 1 '5 1 0,30 1 0 , 1 000, 1 000, 1 000

, 1 00 0 , 4000,6000,1 230
1 1 70 GOTO 1 000
1 1 80 PR I NT , PRINT " 1 ::OREAL"
1 1 90 INPUT "2 >H--..'POTHET J: CAL DATA" � H , CLS
1 200 LET H-H- l. • SCREEN 0,H
1 2 1 0 ON Z-2 GOSUS 20 1 0 . �0 1 0 , 3260 . �'500 • GO
-ro 1 000
,L 220 GOTO 1 030
1 230 CLS , LET F"•- •• HOME BUDGET" , LET P 1 -7 • G
OSUB 7000
1 240 END

A standard menu module with the addition of a provision to set a variable
called H according to whether real or hypothetical data is to be referred to.
The data stored by this program is divided into two categories which are
entirely separate from one another, although data in the real side of the
arrays can be copied into the other side. What this means in practice is that
if the user wishes to enter some speculative data, e.g. 'what would happen
if income were to rise in July by £500 p.a. and two new standing orders were
to be entered into from September onwards, plus the purchase of a new TV
in March', this can be entered into the hypothetical side of the array so that
the interaction of these decisions with existing commitments can be
examined, without corrupting existing data about confirmed plans for the
year ahead.

Commentary
Line 1 190: The variable H is the sole indication that will be used by the
program as to whether real or hypothetical data is being worked with, and
is used to indicate either the O or I elements of the arrays.

Line 1200: Note the use of the value of H to reset the screen colour set as a
reminder of which type of data is being input or displayed.

MODULE 2.3.5
.t. '500 REM************************
1 � 1 0 REM SET UP REGULAR PAYMENTS
1 '520 REM************************
1 :530 CLEAR'5000 • PCLEAR 1 • LET F"LAG-0
1 '540 DIM PA'YMENT$;(1 _. 19 >. MONTHLY< 1, 19' ::,, PA
YMENTS< 1 , 19, 1 1 >,PTOTALS< 1 . 1 1 >,BDEFICIT< 1
.• 1 1 ::, , INCOME < 1 , 1 1 >, SUPP< 1 , 1 1 ::, , BALANCE< 1 ,
' ' >
1 '5'50 DATA " JANUARY " . " F"EBRUl'=tR'"t'" � " r-,ARCH " • "
APRIL " � "MAY " � " JLINE" • " -•UL Y •• � "AUGUST" • " SEP
-rEMBER" , "OCTOBE R " , " NOVEMBER " � " DECEMBER"
1 '560 DIM MONTH•< 1 1 > , RESTORE
1 �70 FOR i: -0 TO 1 1 • READ MONTH• < J: ::O • NEXT
1 �00 IF FLAG- 1 THEN GOTO 6280
1 '590 INPUT " NUMBER OF CURRENT MONTH , " J MO
• LET MO-M0- 1
1 600 LET Y-M0+ 1 1
1 6 1 0 GOSUB 4�00 • GOSUB 3260• GOTO �030

This module initialises the various arrays used by the program. It also loads
the array MONTH$ with the names of the months of the year.

49

The Working Dragon

Commentary
Line 1580: Once again the variable FLAG is used to determine whether this
module returns program execution to the main menu or to the data-file
module.

Line 1600: The variable Y is used to store the end of the current 12 month
period.

Testing Module 2.3.5
Provided that temporary RETURNs are placed at 4500 and 3 260 you
should now be able to call up this module from the main menu. Having
initialised the program you should also be able to call up the data file
module to save the empty arrays , stop the program, re-RUN it and reload
the empty arrays. These tests will make use of four of the modules you have
entered so far.

MODULE 2 .3.6
4!!500 REM************************
4 =:i 1 0 REM J: N COME
4!!520 REM************************
4!!530 CLS
4!!'540 P R X NT " ' J: HPUT SALARY AS POLLOL..JS , "
4!!5!!50 POR X -MO TO Y
4!!560 LET X l - J: • J: F I l > l l THEN LET I 1 -I 1 -12
457"0 LET P•-MONTH._< J: 1 >-+-" • "
4!!580 LET P 1 -I -+- 1 -MO
4!!590 GOSUB 3500
4600 LET XNCOME< H> I 1 ::.-VAL < Q•),
4 6 1 0 P R X NT � 32*< X -+- l -M0), -+- LEN <P•),-+- 1 , INCO
ME< H, I 1 ::,
4620 NEXT I
4630 CLS
4640 PRINT ''OTHER ANTICX PATED INCOME • "
4650 POR :r -MO TO Y
4660 LET X 1 - X -+- 1 2*< X > 1 1 >
467"0 LET P 1 - J: -+- 1 -MO
4690 LET P•-MONTH•< I 1 ::>-+-" • "
4690 c;;osue 3500
47"00 LET SUPP<H , I l ::,-vAL<Q• ::,
47" 1 0 PRINT � 32*< I-+- 1 -MO >-+-LEN< P• >-+- 1 , SUPP<
H > l 1 :,
47"20 NEXT I
4730 c;;osue 250e-t
47"40 CLS
4750 RETURN

This module accepts inputs for monthly income figures under two
headings, main income and supplementary income.

Commentary
Line 4560: The purpose of this line is to take the value of the loop variable
I , which can vary from Oto 2 2 (since MO can be from O to 11) and to convert
that value into something in the range O to 11 i.e. something that will point
to an element in one of our arrays. Note that this means that our arrays will
not run from O to 11 representing the forthcoming 12 months, they will run

50

Chapter 2 Managing your money

from the number of the current month up to 1 1 and back via zero to the
number before the current month.

Lines 4570-4590: Note how flexible our use of Module 3 can be. Here the
prompt used is a month name and the line on which the prompt is printed is
determined by the variable I I .

Line 4600: The figure for main income i s placed into the array INCOME.
Note that this array, like all the others, has two sides, numbered O and 1 .
The side into which the data is placed will depend on the value of H . I n the
present case, this module is always called by the initialisation module and
only real data is input (i.e. the value of H is 0). In subsequent modules H
could be either O or 1 depending on whether the user has specified real or
hypothetical data.

Lines 4640-4720: The same process as above, but supplementary income
is input and stored in the array SUPP.

Testing Module 2.3.6

Provided that a temporary return is placed at 2500, you should be able to
enter details of income when the initialisation module is called from the
main menu. You may wish to confirm in direct mode that the figures are in
fact stored from INCOME(0,0) to INCOME(0, 1 1) and in the same
positions in SUPP.

MODULE 2.3.7
32::50 REM ************************
:3260 REM INPUT OF PAYMENTS
:;3127'0 REM:-t:****"*******************
:3280 LET F•-"INPUT OF BILLS" • LET P 1 --0 • GO
$1.JB 7000
33 1 0 P R t t-JT " PRECEDE NAME OF I TEM WITH
� � l: F YOU DO NOT WANT 1'. T BI IOCF.:TE O .
:3320 LET P$- ''HEAOING < � zzz � TO Q U I T >�·
S:::J"30 LET P 1 -7
3340 GOSUB :3�:;310
:33::50 l:F c:i•-"ZZZ" THEN cosue 2::500 • RETURN
:;)1360 CL:;:::
:3:370 PR INT " I NPUT UNDER • " � Q•
3380 LET N< H >-N< H >- 1
:33�0 IF N< H >-20 THEN LET N<H >-N<H >-1• P R T
N T ll'!: S,t::32 � " N O MORE ROOM IN PAYMENTS F l t F
. " FOR J: "" 1 TO ::5000 • NE><T • RETURN
:3400 LET PAYMENT• < H � N< H >-1 >-Q•
34 1 0 FOR I-MO TO Y
3420 LET I 1 -I IF l: 1 > 1 1 THEN I 1 -I 1 - 1 2
;;3430 LET F'S'"'"AMOUNT FOR MONTH$< I 1 >-" · "
3440 LET P t -I ... 1 -MO
:34�0 GOSI.JB 3::5::30
;;3460 LET PAYMENTS<H � N< H >- 1 � 1: 1 >-VAL C Q$ >
3470 PRINT � 32*< I- 1 -M0 >-14-LEN< MONTH$C l
1 > > > et•
3480 MEXT l
�490 CLB • GOSUB 2�00•GOTO 3280

This module accepts the input of payment headings and the payments
associated with them for the 12 months to come.

5 1

The Working Dragon

Commentary

Line 3310: This prompt refers to a later stage in the program where average
monthly payments will be calculated for each payment heading and
included in an average monthly budget. Attaching an asterisk to the front
of a payment heading means that it is excluded from this process and
treated as a one-off expenditure.

Line 3390: Only 20 payment headings are allowed for, though this is a
completely arbitrary figure and could be increased (within the limits of the
memory) if you wish.

Line 3400: The name of the payment heading is stored in one or other half
of the array PAYMENT$ - which half is determined by the value of H.

Lines 341 0-348 0: For each payment heading, 12 monthly payments are
requested and placed onto one or other side of the array PAYMENTS.
You may note that this is a three-dimensional array : the first dimension
determines whether we are dealing with real or hypothetical data, the
second dimension refers to the payment number and the third dimension
refers to the month.

Testing Module 2.3. 7

Provided that there is still a temporary line 2500 RETURN, you should
now be able to input payment headings and their associated payments,
verifying in direct mode that they have been placed into the correct
positions in PAYMENT$ and PAYMENTS.

MODULE 2.3.8

52

2!500 REM************************
2!5 1 0 REM UPDATE BUDGET
2520 REM************************
:2!!530 LET T<:: H >-0
2!540 FOR I-0 TO N< H >- 1
2!5!50 LET BUDGET-0
2!560 IF LEFT$<: PAYMENT$<: H, I >, 1 >- •• * •• THEN
,:;OTO 2600
2!5?0 FOR J-0 TO 1 1 LET BUDGET-BUDGET+PAY
MENTS<H,I,J > NEXT
2!580 LET MONTHLY< H , I >-BUDGET- 1 2
:2!590 LET T< H >-T< H >+MONTHLY<H , I >
;2600 NEXT I
2 6 1 0 LET TTOTAL-0 • LET CUM-0
2620 FOR I-MO TO y
2630 LET l 1 - l + 1 2*< I > 1 1 >
2640 LET PTOTALS< H,:1 1 >-0
26!50 FOR J-0 TO N< H >- 1 LET PTOTALS<:: H , T 1 >
-PTOTALS<H, l 1 >+PAYMENTSC H J J , I 1 >•NEXT
2660 LET TTOTAL-TTOTAL+PTOTALS<H , 1 1)
26?0 FOR J-0 TO NC H > - 1 • :I F LEFT-<:: PAYMENT­

� :::: : :! -� i ! t,s, " ot; " THEN TTOTAL-TTOTAL-PAYMENTS

2'500 NEXT J
2690 LET BDEFIC I T<H , l 1 >-T< H >*< I -M0+ 1 >-TT
=aTAI_
2?00 LET CUM-CUM+INCOME< H J l 1 >+SUPP<H J I 1 >
-PTOTALS< HJ I 1 >
2 ? 1 0 LET BALANCE<:: H, Z 1 >-CUM
2720 NEXT I • RETURN

Chapter 2 Managing your money

This fairly short module is a difficult one to follow until you have had some
experience of the program in practice. The purpose of the module is to
perform the calculations which the program is designed to provide, on the
basis of the income and expenditure figures supplied by the user. The
functions and the arrays will be described in full but you may wish to return
to them later when you have seen the figures displayed after the entry of the
next module.

Commentary
Lines 2530-2600: This loop calculates average monthly payments for
every payment heading except for those preceded by an asterisk. The figure
is such that over the year it will be sufficient to cover all payments under
that heading. For regular monthly payments, this figure will be the same as
the payment itself. This budget figure is then stored in the array
MONTHLY, in a position corresponding to that of the payment in the
array PAYMENT$. In addition, the budget figure for each payment
heading is added to what is already contained in one or other of the halves
of the two element array T thus making up a total of the individual budget
figures. If there are no payment headings preceded by an asterisk, the
eventual figure in T will be I/ 12 of the total of all payments over the year.

Lines 2620-2720: Having calculated the budget figures, the module now
proceeds to perform a number of calculations for each month, as follows:

Line 2650: The total of the payments falling during the month is
accumulated in the relevant element of the array PTOTALS.

Line 2660: This total monthly payment is itself accumulated over the 12
months in the variable TTOTAL.

Line 2670: From TTOTAL is subtracted the amount for any payment
which has been marked by the user with an asterisk. TTOTAL now
contains the accumulated total of all payments since the beginning of the
12 month period which were included in the budgeting calculation.

Line 2690: An element in the array BDEFICIT is now set equal to the
difference between the actual amount set aside in the budget and the total
of payments which the budget is meant to be covering. The element in
BDEFICIT corresponding to any particular month will indicate the extent
to which the average monthly budget is ahead or behind the items included
in the budget. If all the budgeted items are due for payment in the first
month of the period, then the budget will be in deficit until the last month
of the year. If all the budgeted items are not due for payment until the last
month of the period then the budget will be in surplus for every month up
to the last.

53

The Working Dragon

Lines 2700-2710: The relevant element of the array BALANCE is set
equal to the cumulative difference between total income and total
expenditure.

Testing Module 2.3.8
If you have not already done so, it would be best to save some data before
testing this module. Re-inserting your temporary RETURN at line 2500
will allow you to input data for income and payment headings (one or two
payments are quite sufficient at present). Having done that, the only test
that is really practical at the present time is to allow this module to be called
and to discover any syntax errors that may have crept into what you have
entered. For overall checking of the module's functions it is probably
better to wait until the next module is entered and the figures can be
displayed.

MODULE 2.3.9

54

2000 REM************************
20 1 0 REM DISPLAY FIGURES
2020 REM************************
2030 LET F•- ••PAYMENTS•• , LET P 1 - 1 , G OS•-•FI 70
00
:2040 LET P•-"MONTH TO START •• • LET P 1 -=5 • GO
SUB 3'!!530
:20'!!50 FOR J:-0 TO 1 1 • J:F Q•-< >MONTH• < I ;:, THEN

NEXT J: • COTO 2040
2060 CLS • LET M 1 -I • IF M0-1'1 1 - 1 2*<M 1 > M0 - 1. ::,
<4 THEN LET M 1 -M0-4- 1 2*C: M0< =5 :>

2070 P R I NT ""MONTH •· ; ' FOR J-M 1 TO M 1 +3 = P
R I NT CHR•< 1 =59 :> > LEFT•< MONTH•< .J-+- 1 2:.-c,c: . I> t t ::., >
, 3 > > • NEXT J • PRINT CHR•< J. =59 > > CHR•< 1 =59 :> ; CH
R•< 1 =,s, :>J •• B " > CHR•< 1 '!!59 ::, >
2000 PR I NT ST�ING• <: 32,CHR• < 1 ::59 :> :> ;
205'0 FOR I-0 TO N<H >- 1
2 1 00 J:F I-< > 1 1 THEN GOTO 2 1 30
2 1 1 0 PRINT (2 1 3*32 , " • • , INPUT " ' ENTER' TQ
CLS AND CONTJ:NUE" ; Q•
2 1 20 FOR J-2 TO 1 4 • PRINT (Ii! J*32,"" • NEXT •
PRINT CR 2*32," " >
2 1 :30 PRINT USING "Ye Y." ; FAYMENT•<: H,
I > ,
2 1 40 FOR J - M 1 T O M 1 +3
2 1 '!!50 PRINT CHR• <: 1 =,9 ::, >
2 1 60 I F I NT< PAYMENTS< H , I , J + 1 2:ot: < .J > 1 1 :> ::, ;:, > -
1 000 THEN PRINT "***"� ELSE PR I NT 1_1,SING "
£.££" > INT< PAYMENTS<: H, I, .J+ 1 2*(.J > J. 1 ::, ;:, ::, ;
2 1 70 NEXT J
2 1 00 PRJ:NT STRJ:NG• <: 3 , CHR•< l. =59 ::, ::, ;
:2 1 90 PRINT USING " £.££. " J INT < MONTHLY< H , 'I ::,
> ,

2200 PR I NT CHR•< J.'!!59 > #
2 ::2: 1 0 NEXT I
22::2:0 PRINT STRING• < 3 2 ; CHR•< 1 �9 ::, � ,
22:30 INPUT "PRESS ENTER FOR ANAL'r'SIS" > Q$
Z240 FOR I-2 TO 1 4 • PRINT (Ii! '1 *32 .. "" • NE:-<T
:22'!!50 PRINT (Ii! 64 , "'TOTAL"
2260 PR I NT "BUDGET" , , "BUDC . EIAL . ", , "F"AY",
, "OTHER INC" , , "TOTAL INC"' , , "CASH BAL- " .

"CUM . BAL . "
:2:270 FOR I-M l T O M l. +3
2:2:80 LET I 1 -I - 1 2*< I > 1 J. >
2::2:90 LET I.2-�+4*< '1 -M i �
2300 IF PTOTALS< H, I 1 ::.< 0 THEN PR l tlT G! 64._
I::2: , CHR:•< 1 5' 1 ::, � ELSE F'·R J: N T ,P 64 -+- J: 2 , C.HR$< 1 =,s,
> ;

23 1 0 PRINT US INC ''£.£.£ " , J: t· �T< ABS< PTO:lTAL -=;,� H
, I 1 ::, ;:, ;:,
2320 IF T <'. H '.:,< 0 THEN PR l l lT O! 96+ 1 .2 ., CHR,s< l.
9 1 ::, ; ELSE PRINT � 9 5 + Y .2,CHR�< 1 �9 > ;
2:330 P� l NT USING "££.£" ., IMT(ABS< T< H -., , ·,
2340 IF EIDEFICITO:: H, 1: 1 >-< 0 THEtl PRINT f.i! 1 .2

Chapter 2 Managing your money

s- I 2 , CHR$C 1 9 1 > ; ELSE PR l �tT � 1 28- 1 2 - CHR�<
1 !59 > ,
:;2:3'!50 PR INT US ING "£:£:E " J lNT< AB�;c BDEF T C T TC
H, I 1 ;. > >
2360 PRINT � 1 60- 1 2,CHR•< 1 �9 ::> ;
237'0 PRXNT US ING "£££: " J :I NTO:: TNO:OME< H • T 1 ;. ::,
2380 PRINT � l 92 - l 2 , CHR$C 1 '!59 > •
:2390 PR:INT USING " £ ££: " ; l hlT< SUPP< H . T 1 ':- ">
2400 PRINT @ 224- X 2 , CHR$C 1 �9 > •
;24 1 0 PR I NT !JS :I NG " £:££ " ; I NT< T NCOME< H . I 1 >­
SLIPP< H, I 1 > >
2420 I F lNCOMEC H , I 1 >-SUPP< H, I 1 >-PTOTALSC
H , 1 1 ::>< 0 THEN P R X NT � 2�6+ I 2 , CHR•< 1 9 1 ::> , EL
SE PRINT � 2'!56- 1 2 , CHRS< t �s, ;. ,
;2430 P R I N T U S ING '" .£:£:£" , lNT< ABS< TNCOMF.- H -
I 1 ==--suPP< H , 1 1 ::.-PTOTALS< H , 1 1 > ;. ;.
2440 I F BALANCEC H . 1 1 >< 0 THEN PR INT � zse
� I 2,CHR•< 1 9 1 > , EL SE P R I NT � 2ea- 1 2 . CHR$C 1
�s, ;. ;
24�0 PR I NT US I t-lG "£££" -' I NTC ABS< BALAMCE< H
, I 1 > ;. >
;2460 NE>-:T I
;247'0 PR INT STR I NG•< :3 2 .- CHR•< 1 �9 ::> >
2480 INPUT " DO YOU W I SH TO SEE F I GURES

AGA I N C 'r"/N ::>" • Q•
2490 IF Q•-< > " Y " THEN RETURN ELSE CLS • GOT
0 207'0

We noted in the last program that display modules for complex data are
themselves likely to be complex, and this, the largest module in the
program, is no exception. Its purpose is to display, in two separate tables,
the details of payments entered so far, the income figures and the analysis
which was performed in the course of running the last module.

Commentary
Line 2060: The desired starting month having been checked, this line
ensures that the table never starts less than three months before the final
month of the 12 month period, since this would render the resulting table
meaningless.

Line 2070: The first three letters of the four months to be covered are
printed across the top of the screen.

Lines 2090-2210: In this loop a series of lines are printed, each containing
a payment heading taken from PAYMENT$, the associated payments for
the four months in question taken from PAYMENTS and the monthly
budget figure for that heading, taken from MONTHLY. Note that the
table is formatted on the basis that the highest figure for a monthly
payment will be £999. If this is exceeded, ••• is printed to remind the user
that this figure cannot be accurately represented in the table. Note also the
use of a loop to clear a part of the screen in the event that the number of
payments exceeds the capacity of a single screen.

Lines 2270-2460: For each of the four months in question, the following
figures are printed in the relevant column:
a) the total payments in each month (2300-2310)
b) the total of budget payments for the month (2320-2330)

55

The Working Dragon

c) the difference between the budget figure and the actual payments it is
meant to cover (23 40 -2350)
d) main income (2370)
e) supplementary income (2390)
f) the balance of income over expenditure for the month (2 4 20-2430)
g) the cumulative balance of income over expenditure since lhe beginning
of the 12 month period (2 440-2450).

You will note that the position of each item on lhe line is diclated by the
variable 1 2 , based upon the value of the loop variable I. This means that in
the case of figures exceeding £999 , instead of not being able to print them
without disrupting the orderliness of the table, they are printed with a
preceding 11/o to show thal they are truncated , followed by the first two
digits. This flag is automatically provided by the Dragon as a result of our
employing the PRINT USING " ll ll ll" format. Note also that negative
balances are indicated by the setting of the square constituting the wall of
the column in front of the item to red (CHR$(191)) rather than yellow
(CHR$(159)).

Testing Module 2.3.9

Provided that you have recorded a valid set of data, you are now in a
position to test this module by loading the data and calling up this module.
You should be faced with an orderly table of figures as described in the
commentary above. If not , at least you have the recorded data to reduce
the tedium of subsequent tests.

MODULE 2.3.10
3000
30 1. 0
:3020
:3030
3(:)40
:30!50
3060
:307'0
3080
3090
3 1 00
3 1. 1 0

� !��
� ! ;�
3 1 60
3 1. 7'0

REM************************
REM SET UP S._.ADOl.J RR:R:A-..·S
REM************************
LET T< l. :,,-T< 0 :,,
FOR I -0 TO N< 0 >- 1
LET PAVr-1ENT•< 1 , I :>-PA'..-MENT•< 0, :I ;,
LET MONT LVC 1 . I >-MONT._.LYC 0,I :>
FC•� .J..,,0 TO 1. 1.
LET PAYMENTSC 1 ,I . J :>-PAVMENTSC 0 . J: , .J>
LET PTOTALS<l.,.J >-PTOTALS< 0,.J :>
LET BDEFICITC 1 . J >-BDEFIC I T< 0 . J :>
LET INCOMEC 1 ,.J >-INCOMEC 0 , .J >
LET SUPP< 1 , .J :>-SUPPC 0,.J >
LET BALANCE< l. , � >-BRLANCEC 0 . J >
NEXT ..J, I
LET N< 1 >-N< 0 >
LET H..,. 1
RETURN

Having entered what is, to all intents and purposes a working program, we
now go on to add some features which add to the flexibility of our tool.
This module , for instance , allows the user to reset the hypothetical side of
the table to the data in the real side. This is simply done by copying from
one side to the other. Note that calling this module results in the loss of any
hypothetical data which is not also present on the real side of the arrays.

56

Chapter 2 Managing your money

Testing Module 2.3.10

Having entered some hypothetical data using menu function 5 . you are
now in a position to reset the hypothetical side of the arrays to the parallel
real set of data, regardless of whether there are more or less items in the real
side.

MODULE 2.3 . 1 1

5�00 REM************************
�� 1 0 REM DELETE BUDGET HEAD
5520 REM************************
55:30 LET P • - '0NAME OF :I TEM TO BE DELETED"
, LET P 1 - 1 • GOSUB 3�00

5�40 FOR :r-0 TO NC H >- 1 • � F Q•< >PAYMENT$C H
., J: > THEN NEXT l , LET F•- •• ITEM NOT FOUND" ·
LET P 1 - 1 0 • GOSUB 7000 • FOR l - 1 TO �000 • NEX
T , RETUF<:N
5��0 LET NC H >-NC H>- 1
:5�60 FOR J - 1 TO M (H ';, - 1
��70 LET PAYMENT•< H, J >-PAYMEMT,._,.. H, _1 + 1 -:,,
��80 FOR K-0 TO 1 1
�:=,90 LET PAYMEt-.lTSC H, _I, K >-PA'r'MENTS< M .
o< >
5600 NEXT K
� 6 1 0 NEXT J
5,s:20 c:;osue 2 � 1 0
�6-30 RETURN

This straightforward module allows the user to specify a payment heading
which, if it is found to be present in the file of payments, is deleted.

Testing Module 2.3. I I

You should now be able to delete an item from either side of the payments
file.

MODULE 2.3 . 12

5000 REM************************
� 0 1 0 REM CHANGES
�020 REM*********�'* * * * * ** *******
�030 LET F,a- " CHANGES " • GOSUB 7000
:=;040 PR J: MT ·· coMt-1ANDS A'·.•'A J: LABLE • ..
5050 F"RIMT •• 1 >CHANGE EXIST I NG BUDGET HE
AD", " 2 >CHAI-.IGE M A J: N I NCO ME " , " 3 >CHANGE A
DD I TIONAL INCOME '·
5060 LET P!ll- " l.JH J: CH DO YOU REQUIRE " • LET P
1 -e , c;osue 3�00
�070 LET H.$-C!'!t•
'!'5080 CLS
5090 lF H$- •• 1 • THEN GO�UR 5 1 30
� 1 00 IF Hs- · • 2 • • OR H.,_.,.,. • • ,=-: • • THEN GOSUB �:320
� 1 1 0 GOSUB ::2:�00
� J. 20 RETURM
� 1 30 LET P$- "'NAME OF BUDGETARY HEACYNG T
0 BE CHANGED '' LET P J. - t GOSUB 3�00
'!'5 1 4 0 FOR J: -0 TO NC H >- 1 • IF Q•< >PAVMFNT .. � H
� :r > THEN t�EXT I , LET F.$.,. "NO HEADING OF TH
A T NAME " • LET P 1 - 1 2 GOSUB 7000 FOR :r - 1 TO

�000 • NEXT • RETURN
'!'5 1 �0 LET s- :r
� 1 60 CLS
5 1 70 LET p,w;-'·NEW F I GURE OR • z � TO LEAVE"
• LET P l .., 1 2
� 1 80 FOR :r -MO T O V
'!'5 1 90 LET :r 1 - Y - 1 2 * < I > l 1)<
�200 P R I N T � 3:2:*C I-MO � • M ONTH•< I t > ;
�2 1 0 PRINT TFtS< 10 > " " ;
�220 PRINT US I NG 0' £ £ ££ . ££ •' , PAYMENTS< H . e .
" >
:;::2::30 GOSUB S,�00
�::2:40 I F Q$- " Z " THEN GOTO 5290
�2�0 LET PAYMENTSCH,S J J: 1 >-VAL C O$)<
�260 P�INT � 32*< :I -M0 >+ 1 � J •• (•• ;

57

I he Work mg Uragon

!5270 PR I IIT USING ''££££ . C£" , PA-.-0MENTS< H,8,
I 1 ... J
!5280 PRINT " >"
!'3290 NEXT
!5300 GOSUB 2�00
!53 1 0 R E TURI l
!5320 l F H-.= " 2 " THEt-� P�INT ''MA :lN T t--H::'r"ot·1E "'
ELSE PRINT " SUPf-""!'LEMEt,ITARV INCOME "
�3-.,e, LET P•-"NE�.J F J: GURE OR • Z • T n I F!"AVF""
!5340 LET P l - 1. 3
!53�0 FOR J: --.MO T O .. ,.
!53€0 LET 1 1 - J: + 1. 2*< X > 1 1. >
!5370 PR:J:NT (2 32*< T -MO+ t > . MONTH•< J: J. > :
"'!i3S0 PR I NT TAB< 1 0 > "' •• ,
!5390 IF Hs- •• z •• THEN P R I NT INCOME< H . I 1 > E
LSE PRINT SUPPC H . t l >
!5400 GOSUB 3�00
!54 1 0 T F Q1*-"Z:'• THEN GOTO !5460
!5420 :IF H!IIE,..."2" THEN LET 'INCOME< H, T 1 >-VAL
C QS > ELSE LET SUPP<H . I l. >-VAL< QS >
!5430 PR:lNT (2 32*< :l -MO-o- 1. >+ t. � - ' " <'. ·• ,
!5440 PRINT US ING '' £ £ £: £ . £ £ ' ' ., VAL< Gl"'- ·, ,
!54!50 PRINT " >"
!5460 NEr:T T
!5470 RETURl-1

The purpose of this module is to allow the user to specify changes to any
figure input for payments, main income or supplementary income.

Commentary
Lines 5 180-5290: In this section the payments stored under a particular
payment heading are displayed one by one. To leave a value unchanged,
the user must input Z; to change a value it is only necessary to input the new
value. Note the usefulness of our prompt module here, since the prompt
itself can be defined outside the loop and used for each repetition of the
loop without further definition.

Lines 5320-5460: Throughout this section of the program the array to be
addressed (either INCOME or SUPP) is determined by H$ - this saves
considerable space over having a separate section for each income type,
though the section could be even shorter if the two types of income were
contained in separate halves of the same array.

Testing Module 2.3.12

You should now be able to change any of the data which you have
previously input.

MODULE 2.3 . 1 3

58

4000 REM************************
4 0 1 0 REM R E G :I STER MONTH
4020 REM************************
4030 LET F•- •. HOME BUDGET •. , LET Pt -0 , r.n�ue

7000
4040 LET P!91-"WHAT MONTH IS IT " • LET P 1 .-.:; ,
GOSUB 3!500
40!50 lF Q•-MONTH•< MO � THEN RETURN
4060 FOR I -0 TO 1 1 • IF Q•< >MONTH�< T > �HEN

NE><T J: • CLS • PR INT (2 9*32 . "THERE MUST BE
SOME MISTAKE . l DON" T KNOW OF A MONT
H CALLED " J Q!5� •• ! " • GOTO 4030
4070 LET M::2:-I
4000 :IF M2<MO THEN LET M2-M2+ 1 2

1..,nsptl!f L IV/tJlltJYIIIY yuu, 11/Ullt::Y

4090 FOR I-MO TO M2- 1 4 1 00 LET 1 1. - I -+ 1 2*< I :> 1 1 >
4 1 1 0 CLS 4 :1 20 LET FS-" UPDATE " • LET P t -0 • GOSI_IR 7000
4 1 30 PR I NT " PLEASE I NPUT AMOUNTS FOR NEXT" � MONTH$< I l > 4 :1 40 FOR J-0 TO N< 0 >- 1 4 1.�0 LET F t -� 4 1. 60 LET P$-PA'.-'MENT$< 0 . I ::,+ " • < " -+STR'$ < PAY
MENTSC 0 , J , t 1 '.:- >- · • :,, · • ' 4 1. ?'0 c;osue 3�:30 4 1 80 LET PAYMENTSC 0 , J , t t >-VAL C Q• >4 1 90 NEXT ._I 4200 LET F1111- ·•MA I N I NCOME < " -+STR ... < Y NC'OME'.C 0 , t :l > >+ •• :,, , •• , LET P l -7 • GOSUB 3�00
42 l 0 LET I NCOME< 0 � I l >-VAL < Q ... > 4220 LET P$- " FIC•D l' T :J ONAL I NCOME , C STR!!: < SIJPP< 0 , I l > ,,_ .. > , " · LET P l -so c.osue 8!'!500 4230 LET SUPP< 0, 1 1. >,...,,.•AL < Q-"' >
4-240 NEXT t 42�0 LET MO-M2-+- l 2*< M2 �• 1 1 > • LET V-MO+ 1 1 T H"-0
4260 GOSUB 2�00 • GOSUB 30J 0 • RETURN

Our final module is one which allows the user to avoid the necessity to
make piecemeal changes every time the month changes. The function of
the module is to delete the data for any months which the user defines as
past and to request inputs under each payment head and for the two
income types for all the months necessary to make up a 12 month period
from the new current month.

Commentary
Line 4090: This loop represents the months from the previous current
month (MO) to the new month which has just been input, but one year
ahead i.e. if the program has not been used for two months and it is
updated from January to March, it will request inputs for next January
and February.

Lines 4140-4190: In this loop, all the payment headings are presented for
updating. Note that the variable H is not used to define which part of the
arrays since in resetting the data it is only the real side of the arrays which is
addressed. At the end of this module a call is made to the module which
resets the hypothetical arrays - this may be omitted provided that it is
remembered that the hypothetical arrays will now contain out of date
information.

Lines 4200-4230: Main income and supplementary income are updated.

Line 4250: MO is set equal to the current month, reduced so that it falls into
the range 0 - 1 1 if necessary.

Testing Module 2.3. I 3
You should now be able to update the program one or more months and be
prompted to give the necessary information to accomplish this. If this
module functions correctly the program is ready for use.

59

111,:; VVU/l(IIIY UltJYUII

Summary
This long program is a powerful tool, properly used, although it takes
some practice to get the most out of it. Taken seriously it can give you some
surprising information about the state of your finances throughout the
year - when things will be tight and when there might be a bit to spread
around, how payments could be re-arranged to ensure a little more at
Christmas or for holidays, what might be the effect overall of a new
commitment or of increased income.

Remember, however, that this book is intended to set your Dragon to
work for you. If you have successfully overcome the problems of
debugging this program then there is no reason why you should not go on
to adapt it to other uses which require the flexible input and manipulation
of data, together with clear presentation and the possibility of running two
parallel sets of information if desired. Simple changes to Module 8 could
lead to a very different type of program using almost the same arrays but
calculating something entirely different. The Dragon is yours, and so is the
confidence you have gained in entering this program. The program itself is
only a foundation for putting your Dragon and your confidence to work.

Going Further
I) The program would be more flexible if the user had the option of
copying the hypothetical data into the real side of the arrays. If you think
about it that should only involve a very small change in the program.
2) As hinted in the commentary on Module 12, real savings in the length of
this program could be made by declaring one more complex array and
inputting data to the various parts of the array according to a small number
of new variables. One place to start might be in combining main and
supplementary income into one array.
3) At the moment, the user has to work through the whole 12 monthly
payments, even if only one is to be changed. How difficult would it be to
add an escape from this process, or even make it possible to access a single
month's payment on command?

60

CHAPTER 3

Drawing on the D ragon

After the rigours of the last program it is with a sigh of relief that we turn to
the topic of the Dragon's excellent graphics capabilities. I should hasten to
add that this chapter is in no way intended to be exhaustive, for the
Dragon's capabilities in this field could (and no doubt will) be the subject
of a book in their own right. Nevertheless, in this chapter we shall tackle
such areas as the creation and saving of simple pictures or maps for use by
later programs, the drawing of geometric shapes, the saving of screen
memory on tape and the design of complex patterns up to 10000*10000
pixels.

The programs you will find in this chapter include Artist, a text screen
graphics tool; Tangrams, a program which allows you to play the ancient
Chinese shape game; Doodle, which allows the owners of Dragon joysticks
to turn their screen into a sketch pad and Designer, a sophisticated tool for
the drawing of large-scale plans.

3.1 ARTIST

While it is true that the high-resolution graphics capabilities of the Dragon
are some of the finest to be found in any micro computer on the market, it
should not be forgotten that there is also a useful set of graphics characters
available in the text mode. Indeed, given the difficulty of placing text and
high-resolution graphics on the screen at the same time, there are many
tasks which, unless they can be accomplished with the low resolution
graphics characters, are not going to be accomplished at all.

The purpose of the present program, apart from giving you the ability,
for the sheer fun of it, to draw multi-coloured pictures on your screen, is to
act as a feeder for two later programs in this book which require designs as
part of their data and indeed, to provide easily recallable designs for
programs of your own which might benefit from the drawing of one or two
simple pictures.

MODULE 3 . 1 . 1
1 000 REM************************
1 0 1 0 REM X N X T X A L X SE
1 020 REM************************
1 030 D X M CORNER< 3 > • CLS0• POKE< 1 024+1 4*32>
, 22
1040 LET x- 1 6 • LET v-e

This module initialises the screen display for the subsequent modules.

61

111t1 vvurKmg ursgon

Commentary

Line 1030: In this program we shall be moving a cursor around the screen
and using a second cursor, on the 1 5th line of the display, to indicate the
graphics character currently in use. In both cases this is more conveniently
done by POKEing the character into the screen memory than by printing
onto the screen. The POKE command has the effect of placing a number
specified in the command into a specified memory location. In our case the
memory location chosen will be that part of the Dragon's memory which is
used to store the contents of the screen. Any number POKEd there will be
interpreted as the character having that ASCII code (see Appendix A of the
Dragon manual). As a result the chosen character will appear on the
screen. All such POKEing will begin at a base of 1024, which is the first
location of the memory for the screen in text mode and to this base will be
added a· number between O and 5 1 1 , representing the number of locations
on the text screen. In this particular case, having cleared the screen and set
it black, the POKE command places a white V on the 15th line for later use
as a cursor.

Line l 040: X and Y represent the co-ordinates of the main cursor on the
32*16 text screen.

Testing Module 3././
The screen should be set to black and a green V should appear on the 15th
line of the display.

MODULE 3. l . 2

1 �00 REM************************
1 5 1 0 REM CURSOR MOVE
1 52 0 REM************************
1 540 FOR I -0 TO 1 5 • POKE< 1 024-32* 1 �-2*I > �
< 1 28 + I > • POKE< 1 024+32*1 �+2* I + 1 > � 1 7� • NEXT
1 550 LET T•-I NKEV• , I F T•< >" •• THEN GOTO 2
030
1 560 LET P-PEEK < 1 024-¥*32-X >
1 �70 POKE< 1 024+V*32-X > � 1 0€ • FOR I- 1 TO 2�
• NEXT
1 �80 POKE< 1 024-V*32-x > � P• FOR x - 1 TO 2� ·
NEXT
1 �90 GOTO 1550

The main purpose of this module is to provide a flashing cursor at the
co-ordinates contained in X and Y, until such time as the user inputs a
command.

Commentary

Line 1540: Re-examination of Appendix A will serve to remind you that the
Dragon has a set of 128 low resolution graphics characters, representing 16
basic characters times the eight possible colours available in this mode. The
purpose of this line is to display across the bottom of the screen one

62

c.,,naprer J urawmg on me ur1Jgon

complete set of the characters in the colour green. These will later be used
to select the character to be POKEd onto the screen.

Lines 155 0-159 0: This short module bears some close study if you have
not come across anything similar before since, in some form or other it is
found in many of the subsequent programs of this book and will find its
way into many of the programs you will go on to write for yourself. Its
purpose is first of all to provide a waiting state, during which time a
flashing cursor will be displayed on the screen.

Line 155 0: This line uses the extremely useful INKEY$ function to detect
whether the user has made any input to the program. Unlike INPUT,
which requires the user to press ENTER before an input is recognised, the
INKEY$ function constantly scans the whole of the keyboard to see
whether a key is being depressed and, if it finds one that is, it is labelled as a
string called INKEY$. If no key is being depressed then INKEY$ is simply
an empty string or " 1 1 in Basic (note that there is no space between these
two quotation marks). It is usual to set another string - I always use T$ -
equal to INKEY$ before going on to use it, for the simple reason that by the
time subsequent program lines have been reached it may well be that
IN KEY$ will have changed due to the finger being lifted from the key.

Line 1 560: Parallel to the POKE command is PEEK, which simply looks at
a particular memory location and returns the number which is to be found
there. It is used here since when we move our cursor around in the later
stages of the program we do not wish it to obliterate any parts of the design
we have built up which it passes across. Accordingly, the original contents
of the screen location where the cursor is to flash are first placed into the
variable P.

Lines 1 570- 1 580: These two lines provide a single flash, on and off, of the
cursor. In the first line the code value of an asterisk is POKEd into the
screen location specified by X and Y. After a short pause, the original
character. whose code value is stored in the variable P, is replaced there.
The two short loops at the end of the lines are there to make the flashing
slow enough to be visible as a regular on-off rhythm.

Line 159 0: This cycle is repeated for as long as a key is not depressed.

63

I he Working Uragon

Testing Module 3.1.2

A flashing asterisk should appear towards the centre of the screen.
Pressing any key should result in an undefined line error.

MODULE 3.1.3
2000 REM************************
20 1 0 REM ED X T COMMANDS
2020 REM************************
2030 LET x-x-<T•-cHR•<9 > >+<T•-CHR•< B > > • L
ET x-x+<X>3 1 >-< X< 0 >
2040 LET Y-Y-<T•-CHR.C 1 0 >>+< T--CHR•<94 > >

:2i;�� r;y:;:�;;:� � � .�-��6 e i.< -"7" THEN POKE < :I
024+32*Y+X > . 1 29 +Y 1 /2+1 €*VAL<T• >
2070 X F T$-''8'' THE� POKE < 1 024+32*Y+X> . 1
..
2080 X F T• - " £ " THEN GOSUB 3000 • GOTO 1 �4-0

��:: � � �== :: S :: ��E�-��S�e T���e C;g��:S f��:
2 1 1 0 X F T•-"M" THEN GOSUB 3�00
2 1 20 GOTO 1 ��0

The purpose of this module is to decide what action to take on the basis of
the key which the user has depressed.

Commentary

Lines 2 03 0-2040: In order to understand these two lines you must first
know something of the way in which the Dragon understands the truth or
falsity of conditions - expressions like A = B or X > Y. Try entering the
following lines:
9999 INPUT X : IF X THEN PRINT 'X'
IOOOO GOTO 9999

Running these two lines will reveal that the Dragon only considers the IF
statement to have been fulfilled if the value input for X is not zero. This is
an important lesson - for the Dragon, true means simply not equal to zero
and false means equal to zero. How does that apply to a condition such as
X = Y?

The answer is that X = Y is interpreted in exactly the same way: if X is
equal to Y then the expression is given a value (actually -I) and if X is not
equal to Y the expression is given a value of zero. What this means is that
such conditions can actually be used as variables in the course of a
program, even though they can only have two possible values, 0 and -I.
That is exactly what happens in these two lines. The value of the four
conditions is used to alter the variables X and Y if, and only if, one of the
arrowed keys on the Dragon keyboard has been depressed (the character
codes referred to in the four conditions are those of the right, left, down
and up arrows respectively). If one of those keys has been depressed, then
one and only one of these conditions will have a value of -1, the others
having a value of zero. After this alteration to the values of one or other of
the co-ordinates, the values of the four conditions are again used to check
that neither X nor Y have passed out of the normal bounds of the 3 2 * 14

64

Chapter 3 Drawing on the Dragon

screen available to the cursor. If X, for instance, is greater than 3 1 , it will
automatically be reduced by I by the first condition of the second
statement in line 2030. Remember not to be confused by the seemingly
contradictory + and - signs - a condition is - I if it is true, not I .

Lines 2060-21 10: The key depressed need not, of course, have been one of
the arrowed keys, in which case T$ (the key depressed) may activate one of
the lines in this section which either perform a direct act or allocate
program execution to another module.

Line 2060: We have already primed a cursor and a line of graphics
characters at the bottom of the screen. When that cursor is moved the value
of its position on the 15th line of the display will be held in the variable YI .
Y I will also be the value of the graphics character pointed to (above a base
of 128). What this line does is to POKE a graphics character in a colour
corresponding to one of the colour codes between 0 and 7 onto the screen at
a location specified by the position of the cursor. This is done in response to
any input between 0 and 7.

Line 2070: Following from inputs of O to 7, input of 8 will result in the
erasure of any character present in the cursor position.

Line 2080: Pressing #' allows the user to define one corner of a rectangular
area on the screen which can later be saved on tape. This will be explained
later.

Line 2090: In the event that the key < or > is pressed the second cursor is
moved - this will be explained later.

Line 2100: Pressing of S will result in a defined area of the screen being
saved to tape.

Line 21 10: Pressing M will also result in the screen display being saved, but
in a different format.

Line 2120: If the key depressed is none of the above, the program execution
simply returns to the flashing cursor.

65

The Working Dragon

Testing Module 3./.3
You should now be able to move the cursor around the screen. though none
of the other program functions is yet available.

MODULE 3.1.4
2!500 REM************************
2!5 1 0 REM CHOOSE CHARACTER
2!520 REM************************
2!530 POKE 1 024- 1 4*32-Y 1 . 1 20
2:540 LET y• 1 -Y 1 -2*< T•- " • •• >-2*< T•-" • '' > ' LET

Y 1 -Y 1 -2*< Y1< 0 >-2*< Y 1 >.30>
2:5:50 POKE< 1 024- 1 4*82+Y 1 > , 22
2:560 RETURN ·•

The purpose of this module is to allow the user to select a graphics
character for POKEing onto the screen.

Commentary
Lines 2530-2550: If you have u nderstood the previous cursor move
module then you will see that this is a simplified version (since this second
cursor moves only along the line, not up and down. Notice that here the
value of the conditions employed are multiplied by 2 since the cursor moves
in 2-space steps. As mentioned before, the value of YI, from O to 15, also
corresponds to the value of the graphics character it is pointing to (+ 128).

Testing Module 3.1 .4
You should now be able to select a graphics character which can be placed
onto the screen in any one of eight colours by subsequently pressing a key
from O to 7. Pressing 8 should erase the character over which the flashing
cursor has been placed. Note that the character placed on the screen will
not be visible until the cursor has been moved from that position.

MODULE 3.1.S

66

:3000 REM************************
.30 1 0 REM SAVE DES J: GN
.3020 REM************************
.30:30 LET T 1 •- J:NKEY* • :I F T 1 *-"" THEN GOTO
3030
;3040 :I F T 1 $ >" 0 " AND T 1 •< "3" THEN LET COR
NER< VAL< T 1 • >*2-2 >-X , LET CORNER< VAL< T 1 • >*
2- 1 >-Y
:30�0 RETURN
.3060 :IF CORNER< 0 > >CORNER< 2 >-2 OR CORNER<
1 > >CORNER< 3 >-2 THEN PR :I NT 13! 1 :5*32 • •• RECTA

NGLE :I MPROPERLY DEF J:NED - '' ; • FOR :1 - 1 TO 10
00• NE><T • RETURN
;3070 :IF < CORNER< 2 >-CORNERC 0 >- 1 >*< CORNER<
.3 >-CORNER< 1 >- 1 > >240 Tt-lENPR"[NT � 1 !5*82 , " D
ESJ:CN TOO LARGE . " FOR J: - 1 T O 1 000 • NEXT :I
• RETURN
.3000 FOR J: - 1 TO 2 • POKE < 1 024+32*CORNER< :I
* 2 - 1 >-CORNER< :1 *2-2 > > , 1 7� • NEXT J:
:3090 P R :I NT G! 1 �*32, "Tt-lESE PO:INTS OK < �r'/l•J
:;, ' 7 " ;

:3 1 00 LET et•- :rNKEY• J: F=" et•- " " Tt-lEN GOTO 3 1
....

.3 1 1 0 :IF Q S < > " Y ' " THEN FOR J: - l TO 2• POKE< 1
024-32*CORNERC J: *2- 1 >+CORNER< :1 *2-2 > > , 1 28•
NEXT J: • RETUR:N
:3 1 20 LET DES :I CN•-sTR J: t�C•< :9 . •• " > • M J: D•< DES

Chapter 3 Drawing on the Dragon

I GN$. 1 >-STR•< CORNER< 1. >-+ 1 -:, M I D•< DES I G;t-1,S,: . 4
>-STR$<: CORNER< 0 >+ 1 > M l 0$<: 0ESI GN• . 7 >-STR•

< CORNER<: 2 >-CORNER< 0 >- 1. >
3 1 30 FOR I -cORt�ER< 1 :>-+ 1 TO CORt-fER< 3 >- 1
3 1 40 FOR J-CORNER<: 0 >-+ 1. TO CORN�R< 2 >- 1
3 1 !!'50 LET DES I GN$=DES I Gt-1$-+CHR•<PEEKC 1. 024-+
32:+: I -+...J > >
� 1 6 0 POKE< 1.024-+32* 1 -+...J >, 1 06
3 1 70 NEXT .J
3 1 90 NEXT r
3 1 90 CLB0
3200 LET v-vAL< LEFT*<DES I GN.,3 > >
32 1 0 LET X-VAL< M I D•< DES I GN• - 4,3 > >
3220 LET z-vAL<M I D•< DEB I GN • • 7 . 3 > >
3230 FOR I-Y T O Y-+<: LENC OES I G N$ >-9 > / Z - 1
3 2 4 0 FOR ...J=X TO X-+Z - 1
32�0 POKE < 1 024-+32* I -+.J > . ASC< M I DSC DESI GN$
. 1 0-+< I -Y >*Z-+...J-X . 1 > >

3260 NE><T ...J, I
327"0 PR INT (@ 1 !!'5*32 . • "TH I S I S l�HAT I S BE IN
G SA'�.,ED . "
3280 FOR I - 1 T O 1 000 • NEXT
329'0 MOTOR ON AUD I O ON , I NPUT "POS I T I 01--� T
APE THEN PRESS --.-- ,t.e-r ,: MOTOR 1: S ON ::, • " ; Ct!S
3300 MOTOR OFF INPUT "PLACE RECORDER INT
0 RECORD MOC>E " > GI*
33 1 0 MOTOR bN FOR I - 1 TO 1 0000 • NEXT
3320 OPEt·� "O" . £- 1 . "ART I S T "
3330 PR I NT £- 1 ,DES I GN$ • FOR I - 1 0 T O LEN< D
ES I GNS ::, • PR INT£ - 1 , ASC< M I D.(DE B I GNS , I , 1 ::- >
• NEXT I ��;: ��g;;;e £ - 1

This program is not solely intended to permit the user to doodle on the
screen in text mode. Its other purpose is to act as a feeder for later
programs which need some pictorial output. This module is one of two
which saves the design that you have created for later use. In this
particular case the design is saved in such a way that only that part of the
screen which actually has the design on it needs to be remembered.

Commentary

Lines 3030-3050: Having pressed # while the cursor was flashing, the
user can now input I or 2 to designate two opposite corners of the
rectangular areas of screen to be saved later.

Line 3060: The main part of this module, called by pressing the S key,
begins here with a check that the two corners defined by the user do in
fact describe a valid rectangle. For the rectangle to be acceptable, all that
is necessary is for the corner numbered I to be above and to the left of
the corner numbered 2.

Line 3070: This particular format for saving a design is intended for
small scale designs and a string will eventually be used for storing the
design in the program which later picks up the design from tape. Since
the maximum length of a string in Dragon Basic is 255 characters, a
check is made that the size of the design will not make it impossible to
store it in one string.

Lines 3080-3100: The points defined as the corners of the rectangle to
be saved are marked on the screen for the user to confirm. Note that the

67

The Working Dragon

two points so marked are actually immediately outside the rectangle to be
saved.

Line 3120: In this line begins the process of building up the string which will
be used to recreate the design at a later date. The first nine places of the
string are given over to recording the co-ordinates of the top left-hand
corner of the specified rectangle, followed by the width. They are placed
into the string using the STR$ function which translates a number into a
string. Note that we do not use LET in placing these figures into the string.
That is because when defining a part of a string using the format
MID$(A$, 1) = "xxx" the inclusion of LET at the beginning of the
command actually resulls in a syntax error. This is a quirk of Dragon Basic
which can confuse anyone new to the machine.

Lines 3130-3180: These two loops scan through the screen positions
falling within the defined rectangle and store the characters found there in
DESIGN$. To show the progress of the loops an asterisk is placed in each
location as it is dealt with, but this line is unnecessary if you feel that you do
not need such reassurance.

Lines 3200-3260: These lines ape the process which will be carried out by
later programs which reprint the design stored in this format. Their effect
is first of all to extract the co-ordinates of the top left hand corner of the
specified rectangle, together with the width. These starting points are then
used, in conjunction with the loop variables to replace the characters in
DESIGN$ in the original screen locations from which they were taken. The
sole purpose of this is to give an example of the method of recalling such a
design and to reassure the user that the design has been properly recorded.

Lines 3280-3340: Having come this far in the cunning construction of a
string to store the design, further progress is barred by an irritating
limitation in the Dragon' s Basic. All that should really be necessary to store
the design on tape should be the i nstruction PRINT JI - I, DESIGNS.
Unfortunately, the Dragon steadfastly refuses to recognise the.existence of
the graphics characters, which are not standard to the ASCII (American
Standard Codes for Information Interchange) character set, when saving
and loading data. Consequently, while we can save the first nine characters
of DESIGN$ (i.e. the numbers representing co-ordinates and width) all the
graphics characters themselves have to be transformed into their code
values and saved as numbers. This limitation is one of the most
disappointing on the Dragon, since quite apart from present uses, the
ability to store numbers in the range O to 255 in single characters and save
them in that form is one of the commonest ways of reducing the amount of
memory used for data storage on home micros.

68

Chapter 3 Urawmg on the Uragon

Testing Module 3./ .5
This module can only really be tested when we have entered a subsequeni
program which will pick up the design from tape and reprint it. Provided
that the method of defining the desired rectangle works satisfactorily,
together with the associated error-checks, and that once the screen has
been cleared the design is reprinted in its original form, you can be fairly
confident that the whole of the module is working properly. The only way
to be absolutely sure would be to enter the relevant parts of the later
program Words which would recall the design from tape and reprint it.

MODULE 3 . 1 .6

:::3!500 REM****:1':*******************:3!5 1 0 REM SAVE MAP :3!520 REM************************ :3!5:30 PR I NT � 1 4*:32 ., " " � • MOTOR ON • AUD 'C O , :I NPUT " POS I T l Ot-� TAPE < -..-,t-.-r- ::, , " , Q!fi :3:540 MOTOR OFF • PR :I NT Ci! 1 4:+::32 , " " • T t--lF"UT "
START RECORDER < _..,....t-.- ::, , " � Q• :3��0 MOTOR ON • FOR I - 1 TO 1 0000 NEXT :3�"50 OPEN " 0 '' , £- 1 , " MAP " 3�70 FOR :r - 1 TO 1 4:«:32 • PR I NT £- 1 � PEEKC l 0? :3-+-I ::, • NEXT I :3�00 CLOSE £- 1 :3!!'>9'0 STOP

For applications which need the use of a larger design, one which would be
too big to store in a single string, this method of storing a design stores the
whole of the screen display, again in the form of the code values of the
individual characters. The first 14 lines are stored.

Tes1ing Module 3. / .6
Once again, this module can only be effectively tested when a later
program, Where, has been entered.

Summary
A great deal of space has been devoted to the commentary on this program
for the simple reason that the techniques used here will be found to have
applications far beyond the present program - or indeed only graphics
applications. In the programs that follow we shall be moving cursors
around screens and inputting one-key commands by means of INKEY$
with gay abandon, so do ensure that you have understood what you have
entered. Apart from the techniques, however, the program is a good
example of the way in which a program with an interesting function
(drawing pictures) can be made into a useful tool with a little thought. A
major point in building up a library of programs is not that there should be
a wide variety of totally self.contained programs, but that the programs
should all contribute to each other's usefulness by the ability to exchange
data where appropriate.

69

The Working Dragon

Going Further
1) The program might be more useful if, instead of simply stopping once a
design has been saved, it were to clear the screen and reprint the design,
then return to the cursor module so that the design can be further
developed if desired.
2) A one key instruction for clearing the screen might be another useful
addition.

ARTIST: Summary of one-key functions

With flashing cursor:
0 to 7 prints graphics characters specified by bottom cursor, in colour

indicated by key value.
8 erases character over which cursor is positioned.
moves to program section which allows definition of rectangle to be

saved.
' or "moves bottom cursor to indicate a different graphics character.
S saves specified rectangle.
M saves first 14 lines of display.
Without flashing cursor: i.e. after input of # .
1 defines top left-hand corner of rectangle to be saved.
2 defines bottom right-hand corner of rectangle to be saved.

3.2 DOODLE

We turn our attention now to a short program which is mainly for fun but
which also contains a useful lesson when it comes to the saving of graphics
displays. The name of the program is Doodle, and the intention is to allow
you to do just that, employing the joysticks that can be cheaply purchased
as accessories to your Dragon.

MODULE 3.2 . 1

1 000 REM************************
1 0 1 0 REM EXECUTE DRAW J: N G
t 020 REM************************
1 030 PMODE 0 , 1 • PCLS • SCREEN 1 , 1
1 040 LET X-2 • LET Y-2 i 0�0 F=OR J:-0 TO 3 • LET -•< J: :>-JO'rSTK< J: :> • NEX

1 060 l: F= J: NKEY• - "s •• THEN GOSUEI 6000
1 070 LET X-X-2*<J<2 :> >�6>-2*C J<2> < 6> • LET
x-x-2*<X>2�4 >-2*<X< 2 >
1 090 LET Y-Y-2*C J<� :> >�6 :>+2*<J<3 :> < 6 :> • LET
v-Y+2*<Y > 1 Sl0 '.>-2* C Y< 2 :>
1 0:510 PSET< X , Y , 1 >
1 1 00 PSETC X , Y,C 1 +C PEEK< 6�280 >< >2�� > >>
1 1 1 0 l:F l: NKEY• - " C "" THEN PCLS
1 1 20 GOTO 1 0�0

You should immediately recognise this as a variety of the cursor move
module which you came across in the last program. Its purpose is to allow
the user to move a small dot around the screen, inking in or deleting lines

70

Chapter 3 Drawing on the Dragon

along the way. In this module apart from the simple techniques necessary
to use the joysticks, we also make use of the PMODE and SCREEN
commands for the first time.

These commands seem quite awesome at first sight but their use is really
quite simple. The plain fact is that the more individual dots a computer is
capable of placing on the same sized screen, the more memory must be
devoted to remembering just where those dots actually are. For most
applications, the kind of memory necessary to create and sustain a display
of up to 25 6*192 pixels is simply an expensive luxury. We noted in the
course of entering the Unifile program that 4,500 memory spaces could be
saved by cutting down the amount of memory devoted to the screen. All
that PM ODE really does is to specify how many dots the Dragon will be
capable of drawing on the screen and consequently their size, since
however many dots may be printed they will always end up filling the
screen if they are all of them present at the same time. The number of dots
and their size is shown in the table on page 93 of the Dragon manual.
PM ODE also sets, by the way, the place in the memory where the image on
the screen is to be stored but this need not concern us at the moment. The
second figure in our PMODE commands will be I.

In this program we have chosen to use PMODE 0,1. We could equally
have chosen to use PM ODE I, I which would have made available more
colours but increased the amount of memory necessary, since the more
colours a particular point of the screen may be set, the more there is to
remember about that point. The smallest dot (or pixel) which we shall be
able to draw in this PMODE is actually composed of four of the pixels
which would be available in PMODE 4 which is the highest resolution
available.

Haying set the PMODE and cleared the area of memory which will be
used (with PCLS) it only now remains to set the SCREEN. It is probably
easier to remember the function of SCREEN if you actually think of it as
WINDOW, for that is the function that it performs.

At any time you have at least two windows available to you called
SCREEN I and SCREEN 0. SCREEN O looks out onto the area of memory
which stores what is displayed on the text screen (that is the type of display
we have been using up to now), while SCREEN I looks out onto the area of
memory used to store any displays created when one of the PMODEs is in
operation. The only other complication is that our window can be set to
two colours, that is to say that it can look at a design in two ways and,
though the same design will be seen, a different set of colours will come·
through. Thus, SCREEN 1,0 means 'look through the window at that part
of the memory which PMODE says is in use and interpret what is there
using colour set zero'. Depending on the PM ODE in use, colour set zero
will either consist of black and green or of green, yellow, blue and red.

71

The Working Dragon

There is another colour set, 1 , which will either be black and buff or buff,
cyan, magenta and orange.

With that brief introduction in mind we turn to examine the program
lines that actually use these commands.

Commentary
Line 1030: Bearing in mind what has been said above, you should have no
difficulty interpreting this line. All that happens is that we choose a
PMODE where the number of pixels that can be set is 128 across by 96
down. We clear the area of memory that will store this screen (try not
clearing it to see the necessity for this) then we look through the window
that points to this part of the memory - before running the program the
Dragon was showing the view through SCREEN 0, as it always does when
not instructed otherwise.

To satisfy yourself that SCREEN has no other function but to look at a
part of the memory, you might like to try the experiment of removing this
instruction, running the module (when you have debugged it) and playing
with the joystick, stopping the program and then inserting temporary line
9999 SCREEN I , I :GOTO 9999. Now GOTO 9999 (not RUN) and you will
see the design you were creating in the memory but which was invisible
because you were looking through the wrong screen.

Line 1050: This line reads the four joystick inputs, each of which provides a
value between O and 63, depending on the position of the joystick handle.
Due to some strange quirk, although only one joystick is connected (in the
case of this program the left) all the values for the two possible joysticks
must be read or the result is nonsense.

Lines 1070- 1080: Here the X and Y co-ordinates of the left-hand joystick
are used to move the dot with which a line is drawn. Note that the move is
two positions at a time. This is necessary because no matter what the size of
the smallest point in the current PMODE, the screen is always defined as
being 255*192 when it comes to specifying addresses. Since our pixel is
actually 2*2, a single move involves a move of 2 spaces in terms of its
address.

Lines I 090 - 1 1 00: When the moving dot arrives in a particular position
that position is PSET, that is, switched on to show colour I (green). The
next line then reads the memory location which registers whether the
button on the joysticks is being pressed, and uses the value obtained in a
condition, whose value is subtracted from the colour. If the button is being
pressed, the value PEEKed will not be 255 and the condition will be true ­
the condition is actually PEEK (65280) < > 255 - and the point will be

72

Chapter 3 Drawing on the Dragon

recoloured in colour zero (black) and will disappear. In this manner lines
can be erased.

Line 1 110: Pressing C will result in the screen being cleared.

Testing Module 3.2. I
Using the module as it stands you should be able to doodle a design on the
screen, inking in lines or erasing them at will.

MODULE 3.2.2

6000 REM****�*******************
60 1 0 REM DATA F J LES
6020 REM********W********•******
6030 MOTOR ON FtlJO I O ON , CLS • It-�PUT ' " POS I T I
O N TAPE THEN PF<:ESS --.--.t<!!-o- 0:: MOTOR t S O N > '
" ; Q!li
6040 MOTOR OFF • 'I MPUT " PLF'1CE RECORDER I N T
0 ,;::ORRECT MODETHEN PRESS .. -.--.t<!!-r • " ; Q,_
60='50 PR J NT '" FUNCT l ONS AVFI I LAEILE , " , " 1 ::>SA'v'
E DES I G N",, "'2 ;>LOAO OES :I c;;N ·· • I N PUT "L-JH I CH

DO YOU REQUIRE • " ; Q • ON Q GOTO 6070 , "5 1 00
6060 A:ETURN
6070 MOTOR OM • FOR I - 1 TO 1 0000 MEX T • CSFIV
EM ''P I C '' , 1 �36,76 7� . 6 1 44
6080 SCREEt-l 1 ,0 • �UD :I O OFF
6090 RETURN
6100 PCLS • CLOADM ''P I C '' , 0
6 1 1 0 nuo i: o OFF • SCREEN 1 , 0 • RETU R N

Whether or not this module will be of much use to you will depend on
whether you wish to save high resolution designs, created by this program
or some other of your own devising. It is included with this program purely
because it uses a facility which is shamefully neglected in the manual
supplied with the Dragon (it's not the only thing to receive that treatment
as you'll no doubt have found to your cost). The facility I refer to in this
case is known as CSA YEM, which is actually meant to enable a user to
store machine-code programs onto tape but whose function is simply to
save a chunk of memory straight on to tape. Since the design that has been
created using this program is merely a chunk of memory, we can save it and
reload it whenever we wish - and the same process can be applied to any
other design produced in high resolution modes.

Commentary
Line 6070: The CSA YEM command only requires that you specify the
memory address to start saving, the memory address to finish and the total
number of bytes (or memory locations) involved. The video memory for
high resolution begins at 1536 and, in the highest resolution PMODE,
continues up to address 7679. Although we do not need all that space for
PM ODE 0, it was actually reserved when we switched the Dragon on and
we have not reduced the amount by use of PC LEAR, so it is safe to save it
without interfering with any of the memory used by the actual program.

73

The Working Dragon

This routine, with these figures, is therefore good for any PM ODE where

video memory is set to start in the first possible location i .e. up to PM ODE

4 , 1 .

Line 6 100: The reverse of CSA YEM i s CLOADM, which loads from tape

some data and places it into a specific area of memory specified by the user.

The position into which the data is loaded is specified by the offset figure in

the CLOADM command. In our case we want to load the data back into

screen memory, so the offset is zero, which results in anything loaded being

placed into exactly the same place as it originally came from.

Line 61 10: To emphasise the point about SCREEN, notice how the

reloaded picture appears instantaneously when this command is reached.

Testing Module 3.2.2
You should now be able to create a design using the first part of the

program and then to save it to tape. Stop the program then RUN it again

and call up this module to reload the data you have just saved. You should

find that your original design appears on the screen immediately after

loading has ceased.

Summary
This program is an indication of the benefit to be gained from keeping an

eye out for simple techniques to accomplish tasks that you have set yourself

- even if they do sometimes arise from unusual sources. Machine-code

programs, and the techniques associated with them are completely outside

the scope of this book, and yet the simplest method of storing a picture that

you will find comes straight out of the set of commands provided for use

with machine code. The moral is that almost anything you can learn about

your Dragon, no matter how obscure it may seem at the time, may well

come in useful at some future date.

DOODLE: Summary of one-key commands

S execution of program is diverted to data file module.

C screen is cleared.

3.3 TAN GRAMS

This program will both serve to allow you to play the ancient Chinese shape

game of Tangrams and to introduce the subject of the Dragon's

outstandingly useful DRAW command. Using this command we shall take

a potentially long and complex program on most other home micros and

reduce its length dramatically since almost all arduous calculation about

angles is performed automatically.

74

Chapter 3 Drawing on the Dragon

If you are not familiar with the basic idea behind DRAW, you will find it
described in Chapter 10 of the Dragon manual and it would be a good idea
to refer back to that before attempting to enter this program.

MODULE 3.3.1

1000 REM********************;t.:****
1 0 1 0 REM INIT I AL I SE
1020 REM*************************
1 030 CLEAR 1 �000 PMODE 4 , 1 • PCLS • SCREEN 1
.. 0
1040 LET ANGLE•-"UERF='DGLHUERFDGLH" LET R

0 - 1 • LET F - 1
10�0 D I M PATTERN•<G > LET s-2
1 060 LET X- 1 29 • LET Y-96
1 07"0 GO:SUB 4000

Nothing in this initialisation module should now be beyond you. The
function of the variables will be explained during the next module.

MODULE 3.3.2

4000 REM************************
4 0 1 0 REM ROTATION
4020 REM************************
4030 IF F< > l THEN L E T S- 1
4040 LET SHORT-INT< 1 0*<SOR< 2 >-<S > >+ . � >• L
ET LONG-SHORT
40�0 IF ROTATE/2< >INT<ROTATE-2 > THEN LET

LONG-INT<LONG*SORC 2 >+ . � > • LET SHORT-LONG
,2
4060 LET LONG-2*INT<LONG/2 > • LET SHORT-2*
J: NT< SHORT/2 >
407"0 IF F - 1 THEN LET D•- " B"+M :I D•<ANGLE!I. ,
RO , 1 ::,+STR•< SH/2 >+" ; "+MI D!II< ANGLE•, 3+RO, 1 ::,
+STR•< SH >+"; " ...,.M :I D•< ANGLE•, O!S+RO , l >+STR•C L
O >+ " ; ,_M :I D•<ANGLE*, 1...,_RO, 1 ::,+STR•< SH >+" J B "
+M I D$<ANGLE.,4+R0 , 1 ::-+STR•< SH-2 > • RETURN
4080 :IF F-2 THEN LET D•-"B "+M :I D•<ANGLE• ·
RO , 1 >+STR•< SM/2 > -+ " J " -+MID•< ANGLE•, 3+RO, 1 >
+STR!!li< SH > -+ " J "+MI o•< ANGLE•, 6-+RO, 1 >-+STRdll< L
O > -+ " � "+M :I D•< AMC.LE* , ?'+RO , 1 >-+STR•< SH >+" � "...,_
MI OS< ANGLE•, 2+RO, 1 >+STR•< LO >+" , B" +f'1 I DC< A
N G LES,4+R0 , 1 >+STR•< SH/2 > • RETURN
4090 IF F-3 THEN LET D•-"B" +MI D•< A�-..GLElli,
RO ,, 1 ::, sTR•< SH/2 >-+- " J "+MID•< ANGLE• -· �-i::.::o, 1 >
+STR•< SH ::,+" J " ...,_MID•< ANGLE* ,, O!S+RO, 1 >+STR:._< t....
0 >+ " ; " +.MID•< ANGLE• .• 1 -+-RO, 1 >-+STR•< SH >+"; " +.
MI 0$0:: ANGL E • , 2 + R O , 1. >+STR•< LO >-+- " , B" -+MID•< A
NGLE9,+RO ,- l >+STR•C SH�2 > • RETURN
4 1 00 IF F-4 THEN LET D•- " B"+MID•< ANGS,RO
, 1 >+STR•< SH >-+ " ; "+M I D•< ANG• , 2-+RO , 1 >+STR'91<"
SH > + '' • ' ' -+-M l: 0$< ANG • , 4+R0 , 1 >-+-STR*<LO > -+ '' ; ''+M
l 0$0:: ANG S , O!S+RO, 1 >+STR•< LO >+" � "+MT. D•< ANGS,
RO , 1 >...,_STR•< LO >+" ; "-+MID•< ANG• , 2-+-RO , 1 >+STR
•..::: SH >-+-" J 8"...,.MID•< ANG9 , 4+RO, 1 >-+STR!li< SH > ' RE
'TURN

I'm afraid that there is no getting away from the fact that this is a dense and
complex module. and one which is quite difficult to enter without errors.
Fortunately, by its very nature, the error messages it will generate will give
a very good clue as to where the errors lie. The functiorJ, of the module is to
calculate certain variables and then, on the basis of these to construct
strings which can be used to draw the three types of geometrical shapes
used in Tangrams: triangles, parallelograms and squares.

75

The Working Dragon

Commentary

Line 4030: The variable F will be used to store the type of figure to be
drawn. 1 means a triangle, 2 and 3 mean parallelograms (two types 10 take
account of the fact that a parallelogram is not symmetrical and thus is a
different shape when it is turned over) while 4 indicates a square. The
variable S refers to size and will be explained in relation 10 the following
lines.

Lines 4040-4050: These two lines are necessary 10 cope with the fact that
the triangles in Tangrams are of three sizes, each twice the area of the next
size down and also the problem that arises out of the fact that lines
ORAWn the same length take on different lengths according to the angle at
which they are placed on the screen. Consider the example of a triangle
drawn according to the following instruction UI0;FIO;LIO. According 10
the instructions given in the string it would appear that all rhe sides should
be the same length and yet examination of the directions specified will
show that what would be ORA Wn is a right angled triangle, where clearly
the hypotenuse is longer than the other two sides.

The solution to this apparent paradox is that all three sides of the triangle
do contain the same number of pixels, but that the pixels themselves,
because they are laid out on a rectangular grid on the screen, are further
apart diagonally than they are up or across. The upshot of this is that to
ORA W even a simple figure like a triangle on the screen and then to rotate
it through 45 degrees, as this program is capable of doing, the length of the
sides in pixels must be recalculated each time.

These two lines begin by calculating the length of the short side of a
triangle when DRA Wn with the hypotenuse diagonal on the screen - the
lengths of the sides of each size of triangle are SQR(2) * the length of the
sides of the next size down. The hypotenuse (LONG) is the same length in
pixels.

In the second line, account is taken of the effect of drawing the triangle
at an orientation which makes the hypotenuse vertical or horizontal. In this
case, the length of the hypotenuse must be again multiplied by SQR(2) to
achieve a sensible result (i.e. a triangle with the same area).

Since the square's sides and the long side of the parallelogram are the
same length as the hypotenuse of the smallest triangle, these two lines have
also dealt with them.

Line 4060: This line ensures that there are an even number of pixels in the
side to be printed, which in turn ensures that the drawing position ends up
at the same place that it started when the figure is finished.

Lines 4070-4100: These lines appear very daunting but all they in fact do
is:

76

(.;t,aprer .J Ufl:JW/f/Y U/1 1111:! Uld!JUII

I) specify a blank move from the current draw position to the perimeter of
the figure to be drawn.
2) alternating between short and long sides, as defined by lines 4040 and
4050, add the necessary figures and the directions for each side to the string
which is being built up.
3) specify a blank move back to the initial drawing position once the figure
is completed.

You will note that the actual directions are not specified, they are letters
taken from the string ANGLE$ on the basis of the variable RO, which as
can be seen from the earlier part of the module, is short for ROTATE. For
any given figure, the relative posi1ions of the letters in ANGLE$ which
indicate the directions of the sides will always remain the same but the
starting point, that is the direction of the first side, will differ according to
the degree of rotation. Thus at the end of whichever of these lines is
execu1ed a string called D$ will have been created, capable of drawing one
of the figures at a size specified by S and at an orientation specified by RO.
Nothing in the string will indicate where the figure is to be drawn, or the
colour.

Testing Module 3.3.2
To test the module it will be necessary to enter line 2030of the program and
then to enter a temporary line 2040 GOTO 2040. Running the program
should now result in the drawing of a small triangle. To test the drawing of
the other figures, the value of F can be altered to any figure from 2 to 4.
Rotation can be checked by altering RO to read anywhere from I to 8. Size
of the triangles should be capable of ranging from I to 3 as represented by
the variable S.

MODULE 3 . 3.3

2000 REM************************20 1 0 REM DRAW ING ROUT 1 NE 2020 REM************************ 2030 DRAW ·· c i � eM· ·+STR•< X >+·· . • • +sTR$.:' -�· ::-- ·· ' · · -o•
2040 LET T,_._ l: NKE',.$, IF T$_ •• "' TNEtc..1 GOTO 20
4 0 20:::50 LET D.•-" C0 � BM " -+STR$< :,.: ::--+ ' , '" -+STR!:li< Y ::0-+ " J "" -+-D$, DRA�_, D* 2060 LET x-x-< T$-CHR•< 9 > >+< T•-CHR•< e > >- 10*0::: T!'P- " . • • >-+- 1 0*0::: T,.._ .. " :., , I F X >:22!5 THEN LETx-22::; 2070 IF X<29 THEN LET X-29 2060 LET Y-'r'-< T•-CHR•O::: 1 0 ::, >-+< TS-CHR'*.:' q4 .._ -:, - 1 0*< T!ll- '" A " >- 1 0*< T ... - · ' Q " > , 1: F �,· > l 62 THEN L ET Y - 1 62 2090 X F Y < 29 THEN LET Y-29
�!��oi�T��;; ·; R" THEN LET ROTATE-ROTAT�-+- 1 -+-
2 1 1 0 I F F- 1 THEN LET s-S-0::: T•- · · s ·· > • X F S > 4THEN LET s-s-3 2 1 20 X F T • > ·' 0 " AND Ts< " � " THEt-1 LET F-V�L < T$::, 2 1 30 I F T•- ·· o ·· OR T•- " C "' OR T•-cHR!II< 1 :3 > THEN c:osue ::::i000 2 1 40 GOSUB 4000 • GOTO 2030

77

1 ne vvor,ang urtl{}On

This is the main loop of the program and you will recognise some features
shared with a cursor move module. The function of the module is to allow
the current shape to be moved around the screen, rotated, printed
permanently and recorded, or for another figure to replace the current one.

Commentary

Line 203 0: A section is tagged onto D$ specifying that drawing will start at
the position indicated by the co-ordinates X and Y and that the colour in
which it shall be drawn is I or green.

Line 2 04 0: A waiting state until a key is pressed.

Lines 2 060-2090: The limits to movement expressed in these four lines
express the need to ensure space for the largest possible figure to be drawn.

Line 2100: Input of R rotates the figure through 45 degrees clockwise.

Line 2110: If the current figure is a triangle, input of S will shuttle the
variable S through the range 1- 3.

Line 2120: Input of a number in the range 1 to 4 will select the
corresponding figure.

Line 2130: Input of D or C or ENTER will result in calling the next module.

Testing Module 3.3.3
You should now be able to move, rotate, exchange or, in the case of
triangles, to change the size of your figure at will.

MODULE 3.3.4
3000 REM************************
30 1 0 REM REDRAW CURRENT PATTERt-.1
3020 REM************************
3030 lF NN<7 AND T•-CHR-< 1 3 > THEN M l O .. <D
• , 2 >-" 1 •• , LET PATTERN .. < NN >-D• • LET NN-NN - 1
• RETURN

3040 PCLS • FOR t -0 TO NN- 1
30�0 DRAW PATTERN• < t >
3060 l F T• - · ' D " THEt-.1 LET T 1 • - tNKEY• • l F T I
• - •· " THEN GOTO 30"60
:.3070 lF T • - ·· o ·· AND T 1 • - ·· o" THEN FOR J- T
TO NN- 1 • LET PATTERN• < J>-PATTERN•<J- 1 > • NE
,-.:T J • LET NN-NN- 1 • LET T • - " •• • GOTO 3040
3080 NEXT t · RETI.JRN

The purpose of this module is to allow shapes to be permanently stored in
an array so that if they are erased by another shape being moved across
them, they can be redrawn. The module also accomplishes such a
redrawing of all permanently entered figures and allows their deletion.

78

Chapter J LJrawmg on tne uragon

Commentary

Line 3 03 0: The actual Tangram game is played with seven pieces - two
small triangles, one medium, two large, one square and one parallelogram.
This line enters the current figure, including its position, into the string
array PATTERN$, provided that seven pieces have not already been used.

Lines 3 040- 3 08 0: In this loop, each figure contained in PATTERNS is
redrawn on the cleared screen. If C has been input, that is all that is done. If
D has been input then the user is given the opportunity to delete the figure
just drawn by inputting D again. Pressing any other key leaves the figure in
the array.

Testing Module 3.3.4
You should now be able to enter figures permanently into the array, to
redraw the pattern if it is corrupted by the movement of figures and to
delete figures from the design built up so far.

Summary

The speed and simplicity of this program are a tribute to the Dragon's
abilities. Very few other home micros would be able to cram so many
functions into a program of this size. The program is also an indication of
the sheer flexibility of the DRAW command when applied to strings which
are created in the program rather than having to be specified before the
program is run.

Going Further

I) This program could easily be expanded to make allowance for other
types of shape - a few more lines in Module 2 is all that it would take.
2) More complex designs could be built up if the size of PATTERN$ were
to be increased.
3) No check is made, if you do want to play Tangrams, that the correct
pieces are being used - only that no more than seven are in the design.
Could you add such a check?
4) If you are proud of the designs you have created, or of your solutions to
Tangram problems, you may well want to add a data file module to the
program.

TANGRAMS: Summary of one-key commands
T and Q move current figure I and 10 pixels upwards respectively.
1 and A move the current figure I and I O pixels down respectively.
> and- move the current figure I and 10 spaces to the right

respectively.
< and - move the current figure I and 10 spaces to the left

respectively.

79

, 11e vvu1f'.111y uragvn

R rotates the current figure on the screen.
s
1-4

alters the size of the current figure if it is a triangle.
specifies the type of figure to be drawn.

C
ENTER

redraws the total design so far.
places the current figure, at its current position, into the
array of pieces.

D calls up the deletion function: pieces are displayed one by
one with the opportunity to delete them by further input of
D. Any other key leaves a piece in permanent array.

3.4 DESIGNER

I have a special fondness for this program simply because the ideas on
which it is based are not my own: they were taken from an excellent book,
The Principles of Interactive Computer Graphics by William M. Newman
and Robert F. Sproull. The reason that I say fondness is that the program
serves as a reminder to me of how much there is always to learn about the
principles of programming and how many fields lie waiting to be opened
up for no more cost than the price of a few books. Based on two simple
procedures from that book, this program will allow you to define a design
of up to 10,000 by l0,000 pixels in size, to examine that design at various
scales and to rotate all or part of it on the screen. Once its use is mastered it
is capable of being used in a variety of applications where it is desirable to
be able to change and manipulate designs quickly and easily.

MODULE 3.4. 1

6000 REM************************
60 1 0 REM DATA F I LES
6020 REM************************
60::30 MOTOR ON• RUDIO ON , CLS • INPuT ·· PoSIT T O
N TRPE THEN PRESS e-nt-,e-..- < MOTOR IS ON :::, , ••
., Q ..
"504"0 MOTOR OFF" ' INPUT "' PLACE RE="CORDER J: N
CORRECT MODE THEN ...-nt.,..,- , •• ; Q$
60�0 PR J:NT • PRJ:NT " FUNCTIONS A'..-'A T L A8L E• " .
' " 1 '.>SAVE DESJ:GN"' � � "2 :>LORD DES I GM" , 'INPUT "
WHICH DO - YOU REQ U J:RE • "; Q • ON Q GOTO 607"0 ,
6 1 ::30
6060 RETURN
6070 MOTOR ON • FOR I- 1 TO 1 0000•NEXT
6080 OPEM " 0", £.- 1 , " DES X GN "
6090 PR I NT £ - 1 , LL
6 1 00 FOR X -0 TO L L - 1 • FOR J-0 TO 3 • PR INT
£- 1 , COORDS< I , .J :, NEXT -' ·· I
6 1 1 0 CLOSE £- 1
"5 1 20 RETURM
6 1 30 OPEN '' I "" ,£- 1 , '' DESICN''
6 1 40 INPUT £- 1 ,LL
"5 1 �0 FOR I-0 TO LL- 1 • FOR J-0 TO 3 • INPUT
£- 1 , COORDS< J: ,J '.> • NEXT J � X
6 1 60 CLOSE £ - 1
"6 1 7' 0 RETIJRN

A standard data file module.

MODULE 3.4.2

80

1000 REM******�*****************
10 1 0 REM J:NIT % A LISE

Chapter 3 Drawing on the Dragon

1 020 REM************************
1 030 PCLEAR4 • PCLS • PMODE4 .• 1
1040 LET UPPER-0 • LET LOWER- 1 91 • LET LEFT-
0• LET R I GHT-:z��
1 0�0 DIM COORDSC 200,4 >
10€0 LET T t -- 1
1 07 0 DIM X1C 4 , 4 > • DIM X2<4 , 4>
1 000 DRAW " BM0 , 0 , F4 , BU4 .< G4'· • GET 0:: 0 , 0 >-0:: 4

, 4 >, X 1 • G , PCLS

The initialisation module - the variables will be explained as they are
used.

Commentary

Lines 1070- 1 080: This is our first use of the Dragon's GET command,
which allows a specified area of the screen to be read into an array and later
replaced anywhere on the screen by the use of PUT. In this case what is read
from the screen is a small x which will be used later as a cursor but this
process cannot be seen as SCREEN has not yet been set to point to the
graphics area of memory.

Testing Module 3.4.2
This module cannot be properly tested until other modules have been
entered.

MODULE 3.4.3

2000 REM************************
20 1 0 REM MAIN PROGRAM
2020 REM************************
2030 LET X-LEFT- 1 20 • LET Y-UPPER-9€ • LET R
J GHT-LEFT-2�� • LET LOWER-UPPER- 1 91
2040 SCREEN 1 , 0
20�0 LET L 1 -X-LEFT • LET U 1 -Y-UPPER
2060 FOR I - 0 TO LL- 1
2�70 LET x 1 -coORDS<I , 0 >
aee0 LET Y 1 -COORDSO:: I . 1 >
2090 LET X2-COORDS< I,2>
2 1 00 LET Y2-COORDS<I , 3>
2 1 1 0 GOSUB 4000
2 1 20 NEXT I
2130 IF T 1 < >-1 AND T 1 >-LEFT-2 AND T 1 < LEF
T-2�4 AND T2 >-UPPER-2 AND T:2:< UPPER- 1 9 0 T
HEN CIRCLE< T t - LEFT,T:2:-UP PER > , 2
2 1 40 LET T•-INKEY• • IF T•< > " ' '' THEN GOTO 2
2 1 0
2 1 �0 GET O:: L1-2 . u 1 -2>-0:: L 1 -2 , u 1 -2 ;, . x2 , G
2 1 60 FOR I-1 TO :Z� • NEXT I
2 1 70 PUT < L1-2 . u 1 -:Z >-<L 1 -2 . u 1 -2> . x 1 . 0R
2 1 00 FOR 1 -1 TO :Z� • NEXT I
2 1 90 PUT C L1-2 , U1-2>-< L 1 +2 , U 1 +2 > , X2 , PSET
2200 GOTO 2 1 40
22 1 0 IF T $ >-"0" AND T$< "4" THEN LET POL.JE
R-VAL< T• >
2220 IF T•- "M" THEN LET M0- 1
2230 IF T $- " X " THEN LET M0-0
2240 LET TEMP-0
22�0 LET TEMP-TEMP-10-POWER*< T•-CHR•< 9> >
- 1 0�POWER*< T•-CHR•<e � ;,
2:260 IF M0-1 THEN LET LEFT-LEFT-TEMP ELS
E LET x-x-TEMP
2:270 IF LEFT< 0 THEN LET LEFT-0
2280 %F LEFT >974� THEN LET LEFT-974�
2290 %F X-LEFT >:2�3 THEN LET x-LEFT-2�3
2300 IF X-LEFT< :2 THEN LET x- LEFT-2
:23 1. 0 LET TEMP-0
2320 LET TEMP-TEMP- 1. 0�POWER*< T•-cHRS(t 0 >
> - 1 0-POWER*< T•-CHR•<94 ;, ;,

:2330 IF M0- 1 THEN LET UPPER-UPPER+TEMP E
LSE LET Y-Y+TEMP

81

The Working Dragon

2340 J:F UPPER< 0 THEN LET UPPER-0
2:3�0 J:F UPPER >974� THEN LET UPPER-974�
2360 J:F Y-UPPF.R > 1 B9 THEN LET Y-UPPER -+- 1 9�
2:370 J:F V-UPPER< 2 THEN LET v-uPPER-+-2
:2:380 J: F T•-"F" THEN LET T1-X• LET T2-Y
2:390 J: F T•-" T •• F=IND T 1 < >- 1 THEN LET COORD
S< LL > 0 >-T 1 • LE T COORDS< LL > 1 >-T2 • LET COORD
S< LL > 2 >-�• LET COORDS<LL > :3>-Y• LET T 1 -- 1 • L
ET LL-LL-+-1
2400 X F T•- ·'R "" OR' T•- " ' D " THEN GOSUB :3000
24 1 0 J:F T*- " S "' THEN GOSUB 6000
2420 PCLS
24:30 XF M0- 1 THEN GOTO 20:30 ELSE GOTO 20
40

This main program module allows a flashing cursor to be moved around
the screen, the area of the design to which the screen points to be moved,
lines to be defined and later modules to be called.

Commentary
Line 2 03 0: X and Y are the co-ordinates of the flashing cursor. UPPER,
LOWER, LEFT and RIGHT are the addresses of the boundaries of the
screen, expressed in terms of the overall I 0000* I 000 0 pixel space available
for the design. The screen area starts in the upper right-hand corner of the
total area available.

Line 2 050: LI and Ul are the co-ordinates of the cursor on the screen.

Lines 2 06 0- 212 0: As the program progresses, the lines entered into the
design will be stored in the array COO RDS. This loop will print out each
line entered so far, when necessary, calling up a later module to do the
actual drawing of lines.

Line 2 13 0: Tl and T2 represent the address of the start of a line that is
currently being defined. If Tl is set to -1 it means that no line is currently
being defined. If Tl is not equal to - l and the co-ordinates represented by
Tl and T 2 fall within the boundaries of the screen, then a small circle is
printed at the location.

Lines 2140- 2 2 00: This section again makes use of GET to save what is on
the screen in the place where the cursor is to be printed. The cursor is now
PUT onto the screen with the OR attribute set - in other words its printing
will not erase anything that is already there on the screen in that position.
Then the original contents of the location are restored by PUTting back
what was saved in line 2 150. Note that because both GET instructions
terminated with G, meaning 'store full graphic detail', the PUT
instructions have also to have an attribute specified, such as OR or PSET
- even though the latter only means 'put what is in the array on the
screen'.

Line 2 2 10: Input of a number in the range zero to three, sets a variable
called POWER which will later be used to determine the move to be made

8 2

Chapter 3 Drawing on the Dragon

by cursor or screen. The move will be 10 to the power of POWER pixels
(i.e. I to 1000).

Line 2220: Input of M is stored in the variable MO (for move) is interpreted
as meaning that any move specified will be a move of the screen across the
design.

Line 2230: Conversely, input of X is interpreted as meaning that any move
will be a move of the cursor across the screen.

Lines 2240-2370: The cursor co-ordinates or the screen co-ordinates are
changed according to the above rules if one of the arrowed keys is input.

Line 2380: Input of F defines the beginning of a line to be drawn at the
point currently occupied by the cursor.

Line 2390: Input of T defines the destination of a line, provided that the
co-ordinates of the origin of the line have already been entered.

Line 2400: Inputs of R or D specify rotation or deletion of parts of the
design and require the calling of other modules.

Line 2410: Input of S results in the calling of the data file module.

Line 2430: The design is redrawn, with the cursor reset in the middle of the
screen if MO indicates that the screen move mode is set.

Testing Module 3.4.3
You should now be able to move the cursor around the screen, but not
many more meaningful tests are possible until the later modules are
entered. You may at least satisfy yourself that the co-ordinates of lines are
being entered by defining some starts and finishes and checking that the
addresses have been placed in the array COO RDS. Note that a temporary
line 4000 RETURN will be necessary.

83

The Working Dragon

MODULE 3.4.4
4000 REM***************�**�*****
4 0 1 0 REM DRAW L 1NES
4020 REM************************
4030 LET LOWER-UPPER+ 1 9 1 • LET R l GHT-L EFT+
2:5:5
4040 XF <X 1 < LEFT AND X2< LEFT > OR < X 1 >R l G
HT AND X 2 > R 1 GH T > OR < Y 1 >LOWE� A N O V2 >LOW
ER > OR < V 1 < UPPER AND V 2 < UPPER > THEN LET
OUT- 1 , RETUi::;,:t-,1
40:50 XF Y 1 < UPPER THEN LET EDGE-UPPER
4060 lF V 1 >LOWER THEN LET EDGE-LOl·lER
4070 lF Y t < UPPER OR Y 1 >LOWER THE�I LET � � 1
-x 1 -c x2-x 1 >*< EDGE-Yt >/C V2-Y l > L ET Y 1 -EDG
E
4080 1 F Y2� UPPER THEN LET EDGE-UPPER
40�0 lF YZ>LOWER THEN LET EDGE-L. OWER
4 1 00 l F YZ< UPPER OR Y2 >LOWER THEN LET X2
-x2+<X 1 -X2 >*<EDGE-V2>/C Y 1 -Y2 > • LET Y2-EDG
E
4 1 1 0 l F X 1 >R lGHT THEN LET EDGE-RlGHT
4 1 20 lF X 1 < LEFT THEN LET EDGE-LEFT
4 1 30 lF X 1 < LEFT OR X l >R t GHT THEN LET Y 1 -
'r' 1 • < v2--,· 1 >*< EDc:;;;E-X 1 >/< x2-x 1 > • LET X 1 -EDGE
4 1 40 lF X2 > R l GHT THEN LET EDGE-R l GHT
4 1 :50 XF X2< LEFT THEN LET EDGE-LEFT
4 160 lF X2>R l GHT OR X2< LEFT THEN LET YZ­
Y2+C V 1 -Y2 >�C EDGE-X2 >/< X 1 -X2> • LET X2-EDGE
4 1 70 lF X 1 -LEFT>-0 ANO X2-LEFT>-0 AND X 1
-LEFT < -2:5:5 AND X2-LEFT<-2:5:5 A N D Y 1 -UPPE
R >-0 AND Y2-UPPER >-0 AND Y1-UPPE R < - 1 9 1 A
ND Y2-UPPER<-2�� THEN L l NEC X 1 -L EFT . Y 1 -UP
PER>-< X2 - LEFT � Y2-UPPER > � PSET
4 1 80 RETURN

The purpose of this module is to take two sets of co�ordinates , X 1/Y I and
X 2/Y2 and to decide whether any part of a line drawn between the two
points so defined would pass across the screen as it is now placed. If any
part of the line would fall upon the screen it is drawn , otherwise it is
ignored.

Commentary

Line 4040: If both XI and X 2 or both YI and Y 2 are off the screen in the
same direction then no part of the line can fall onto the screen.

Lines 4050-4060 : If a line starts above or below the area covered by the
screen, these two lines reset the variable EDGE to coincide with the top or
bottom of the screen.

Line 4070 : For lines which begin above or below the screen, this line
calculates the horizontal position at which the line will pass through the top
or bottom edge. The formula in the first half of the line says nothing more
complex than that if, for instance, the line in question passes through the
top edge of the screen halfway through its vertical component, it will also
be halfway through its horizontal component. Clearly this will only hold
true for straight lines.

Lines 4080- 4160 : The same kind of process is carried out with regard to
variables Y 2, XI and X2 .

84

Chapter 3 Drawing on the Dragon

Line 4170: Since it's possible for a line not to lie entirely above, below or to
one side of the screen and yet still not pass across the screen itself, this line
makes one final check that the co-ordinates calculated do in fact lie entirely
on the screen and, if they do, draws the line indicated.

Testing Module 3.4.4
You should now be in a position to define lines and see them drawn on the
screen and also to move the screen over the design. You could do that
before, it's simply that you couldn' t see it happening.

MODULE 3.4.5

::3000 REM************************
::3 0 1 . 0 REM SCALE/ROTATE/DELETE
3020 REM************************
3030 CLS • PCLS • SCREEN 0,1
3040 I NPUT " ANc;LE THROUGH L,J H I CH DES 'C GN T
S TOBE ROTATED , " ; ANGLE • LET ANGLE-FH�GLE*3
. 14 1 �926.,.. 1 80
::30�0 PF-':l:NT • I NPUT "SCALE !='"ACTOR TO D I V I DE

D I MENS I ON S BY • ' ' ; SCALE • l: F'" SCALE
-0 THEN LET SCALE - 1
3060 SCREEN 1 , 0
3070 F'"OR I - 0 TO LL- 1
::3080 LET X:3-<COOROS< I , 0 >-X >.,..SCALE
::3090 LET Y3-< COORDSC I , 1 >-Y >/SCALE
3 1 00 LET X4-<COORDS< I , 2 >-X >/SCALE

� }1: t�� �t=�����f:;i���z��������3*S I N< A
NGLE > >
3 1 30 LET Y 1 -Y- I NTC Y3*COS< ANc;L E >-X3*SINC A
NGLE > >
3 1 40 LET x2-x- I NT C X4*COSC ANGLE '>-Y4*S I M< A
NGLE > >
3 1 �0 LET v2-v-INTC Y4*COSC ANGLE >-X4�S I NC A
MGLE > >
3 1 60 GOSUB 4000
3 1 70 IF'" T!lo< > " D " THEt-� GOTO 3220
3 1 80 LET T 1 S - I NKEY• • I F'" T 1 ,__ ,. . , THEN C.OTO
::3 1 80
::3 1 90 XF'" T 1 *-'' D" THEN FOR ...J- I TO LL - 1. • FOR

K-0 TO 3 , LET COORDS< .J, K >-COORDS<. ,_ 1. , I< '>
NEXT K • MEXT ...J LET LL-LL- l
3200 YF T 1. s- · · o · · THEN LET x - x - 1.
3 2 1 0 l: F'" T 1 $- " C>" THEN RETURN
3220 NEXT Y
3230 XF'" X NKEY$- '' '' THEN GOTO 3230
:3240 RETURN

The purpose of this module is to reproduce the design on a smaller or larger
scale, as specified, and to rotate it around the current cursor position. The
module is much less complex than it looks at first sight.

Commentary

Line 3040: Rotation is input in degrees and translated into radians.

Lines 3080-3 I I 0: The co-ordinates of the start and finish of each line are
recalculated in terms of their distance from the cursor position and simply
divided by the scale specified. Note that it is perfectly possible for the scale
to be less than one, thereby magnifying the design.

85

The Working Dragon

Lines 3 120-3150: The procedure for moving a point with, for instance,
co-ordinates of X and Y through angle A, is to apply the formula
X 2 = X'COS A + Y' SIN A and Y 2 = X'SIN A + Y'COS A. This is
applied in these lines to X3, Y3, X4 and Y 4, which are the co-ordinates in
terms of the cursor position. When these altered variables are added to X I
and YI, they define a scaled and rotated pattern.

Lines 3 170-3 230: If this module has been called by the input of D during
the course of the previous module, then the lines are drawn one by one,
giving the user the opportunity to input D against any which are to be
deleted. Input of Q at any time, returns to the main module. When the
scaled and rotated design is finished on the screen, it remains until a key is
depressed before returning to the main module.

Testing Module 3.4.5

You should now be able to reproduce any lines entered to a specified scale
and rotated through any desired angle. You should also be able to call up
this module for the purpose of deletions.

Summary

Given a little imagination, this program can be a useful tool in a variety of
applications. You can plan layouts, draw maps or simply mess about. In
fact, with a program like this one loaded you can make your Dragon
simulate many of the capabilities of far more expensive graphics
computers beloved of engineers and scientists in many fields.

The program is also a reminder of the wealth of ideas that lie waiting to
be translated into action from the wide variety of books on computing that
are available today.

Going Further

1) The end of Module 3 has been left a little messy. It works properly but it
is cumbersome in th. t it requires the redrawing of all the lines on each move
of the cursor. What are the conditions that would have to be satisfied in
order to make it practical to skip the redrawing of the lines? It's not as
straightforward as it looks at first.

DESIGNER: Summary of one•key commands

With flashing cursor:
0-3 sets cursor move to equivalent power of 10.
M next move specified will be move of screen over design.
X next move specified will be of cursor within screen limits.
F line to be drawn starting from cursor position.
T line to be drawn to this position (only after F).
S call data file module.

8 6

Chapter 3 Drawing on the Dragon

R call module which scales or rotates design.
D as above but with option to delete individual lines.
Arrowed keys - al?propriate move of cursor or screen.
After initial input of D:
D delete line just drawn.
Q return to main module.

87

CHAPTER 4

Easy education

In this chapter we shall consider three programs which enable the Dragon
to make its contribution in the field of home education. The first of these,
MultiQ, is a program designed to allow the user to input a series of
questions and answers, which are then used as the basis of randomly
generated multiple choice tests. The second program is Words, a basic
reading tutor and, lastly, Where? teaches the locations of cities in any
country in the world you care to program in.

The object of the programs is to give you some idea of what can be
accomplished in the field without too much effort. Even so, unless you
intend to buy a range of software on cassette, with specialist programs
dedicated to individual subjects and coming complete with their own files
of data, the usefulness of your educational data will always depend on the
amount of work you are prepared to put i nto them. The best multiple
choice question program in the world is not much use unless at some stage
you are prepared to sit down and feed in enough questions to make i t
interesting.

l fyou are prepared to give such programs the data to work with, they can
often be spectacularly successful for the simple reason that they work at the
pace of the student, show no signs of impatience, give no reward for short
cuts or cheating and are always ready for just one more try at any time of
day or night.

4.1 MULTIQ

This program is a favourite of mine. When I wrote it I was satisfied that i t
was a competent piece of work that would do the job that i t was designed
for. It was not u ntil I entered a mass of questions and answers and tried it
out on people that I realised that such programs make learning as addictive
as any game.

Like Uni file, this program is a chameleon, designed to change i ts colour
to suit your need. At one moment you may wish it to be a French tutor,
offering a variety of French words as possible translations for an English
word. Later on you may have it asking fairly complex questions on 19 th
century history, giving a series of dates as possible answers. The aim of the
program is to enable you to do all these and more without having to make
changes in the program itself.

88

Chapter 4 tasy education

MODULE 4. l . l

6000 REM************************
60 1 0 REM DATA FILES
6020 REM************************
6030 AUDIO ON • MOTOR ON• P R J: NT• J: NPUT "POSI
T I ON TAPE THEN PRESS •nt•r < MOTOR IS ON
;:, " ; c:t• ' MOTOR OFF

6040 PRINT • INPUT "PLACE RECORDER IN CORR
ECT MODE THEN PRESS _.nt•r " ; Q•
6050 PR I NT • PR 1: NT "FUNCT IONS Fl'-.,'FI 1: LABLE " •
" 1 >SAVE DATA" , . " 2 >LOAD DATA", J: NPUT "WH I C
H D O YOU REQU J: RE • " ; Q • ON Q GOTO €070,6 1 50
115060 RETURN
6070 MOTOR ON • FOR I-1 TO 1 0000 • NEXT 1:
6080 OPEN''0 '' . £- 1 . ''MULTIG:t ''
115090 PRINT£- 1 , ITEMS
6 1 00 FOR 1: - 1 TO J: TEMS-2 • PRINT£- 1 , A•< x :> , e
• < I > • NEXT 1:
6 1 1 0 FORI-0 TO 9 • PR I N T£ - 1 , D•< I ;:,,oc 0 . 1 ;:,,o
C 1 • l > • NEXT I
6 1 20 PRINT£- 1 , NAME•c 0 ;:, , NF1ME•< 1 ;:,
6 1 30 CLOSE £ - 1
6 1 40 RETURN
6 1 �0 RUN 6 1 60
6 1 60 PCLEAR 1 • CLEAR 18000 • D l: M A•C 499 > • D l
M esc 499 ;:, , 0 1 M DC 1 , 9 > • D l M o•c 9 ;:, , 0IM NAME•
< , >
6 1 7'0 OPEN" l " , £- 1 , " MULTIQ"
6 1 80 lNPUT:£- 1 , l TEMS
6 1 90 FOR 1 - 1 TO ITEMS-2•INPUT£-1 , A$C I>,S
•<I > NEXT I
6200 FOR I-0 TO 9 • l NPUT£- 1,D•< I > , DC 0, J: ;:,,
DC 1 • l: >• NEXT I
62 1 0 l NPUT£ - 1 , NAME•< 0 ;:,,NFIME*< 1 >
6220 CLOSE £ - 1
6 2 3 0 LET A*C ITEMS- 1 >-CHR• < 255 > • LET F1sc 0 ;:,
-cHR•< 0 ;:,
6240 GOTO 1000

A standard data file module.

MODULE 4.1 .2

7000 REM************************
7'0 1 0 REM FORMAT TITLES
7020 REM************************
7030 LET P2- 1 4-INT< LEN<F• >�2 ;:,
7040 PR J: NT � 32*P 1 -P 2 , STRING*<LENC F• ;:,-2 .
CHR•< 1 85 > ;:,
7050 PR l:NT � 32*C P 1 - 1 ;:,-P2. CHR* < 1 85 >-F•-c
HR$< 1 8=:5 >
7060 PRINT � 32*< P 1 -2 ;:, -P 2 , STRING* C LEN<FS
>-2 , CHRS< 185 > >
7070 RETURN

A standard title formatting module.

MODULE 4.1 .3
1 000 REM************************
1 0 1 0 REM MENU
1 020 REM************************
1. 030 CLS • LE T F•-"MULT J: G:t " • LET P 1 - 1 , c;osu0
7000
1 040 PR I MT • PRINT " COMMANDS AVAILABLE• "
1 050 PR I NT •• 1 > :I NPUT NEW :I TEMS"
1 060 PRINT " 2 >SEARCH/DELETE"
1 070 PR J: NT " :3 :>ENTER NEW TYPES"
1. 08 0 PRINT " 4 :>GENERATE QUESTIONS "
1. 09 0 PRINT " � >DJ:SPLAY OR RESET SCORE"
1 1. 00 PRJ:NT " 6 >DATA FILES"
1 1 1 0 PR J: NT '' 7 :>INITIAL % SE ''
1 1 20 PR J: NT " 8 >STOP "
1 1 30 PRINT , l: NPUT "i.JHICH DO YOU REQUIRE • "
, z• CL S
1 1 40 ON z c;osue 2000 . 3000 � 1 640 � 3=:100 � 4000
, 6000 � 1 50 0 , 1 1 60

89

The Working Dragon

1 1 �0 c;oTO 1 000
1 1 60 LET F•- " MULT :I Q " , LET P 1 -6 , c;osue 7'000
1 1 7'0 STOP

A standard menu module.

MODULE 4.l.4
1 �00 REM************************
1 � 1 0 REM :I N :I T :I A L :I SE
1 �20 REM************************
1 �30 PCLEAR l • CLEAR 1 8000
1 �40 D :I M NAME•< 1 >,Q< � >
1 ��0 D Z M A•< 45'5' > • D :I M e•<45'5' >
1 �60 LET A•< 0 >-CHR•< 0 > • LET A•< 1 >-CHR•<2�
" >
1 �7'0 D Z M D•< 9 > , D< l , 9 >
1 �90 LET :ITEMS-2
1 �90 LET F•-"TEST STRUCTURE" • LET P 1 - 1 • C.O
SUB 7'000
1 600 P R :I t-�T • :I NPUT "NAME FOR. ANSWER. , " ; NAME

•< 0 >
1 6 1 0 P R Z NT • :I NPUT "NAME FOR QUEST Z ON • " > NA
ME•< 1 >
1 620 PR X NT • X NPUT "ARE THESE CORRECT (Y/N
> • " > Q• • CLS
1 630 X F Q•< > "' Y '' THEN COTO 1 �00
1 .S:40 L.ET F•- .. TYPES" • LET P 1 -0 , c.osue 7000
1 6�0 PR X NT TAB< 1 5' >" ' zzz · TO QU :I T" >
1 .S:60 P R X NT "TYPES :I NPUT SO F AR • - " >
1 670 X F TYPES< >0 THEN P R. X NT•FOR X -0 TO T

YPES- 1 • PR X NT :r - 1 ; ' ' > '' ; D•< X > • NEXT X • ELSE P
R X NT " NONE", PR X NT
1 690 X F TYPES-< 1 0 THEN X NPUT " X NPUT NEW T
YPE • " J Q• • EL.SE PR X NT "ONLY 1 0 TYPES ALLOW
ED " • FOR X - 1 TO 2000 • NEXT X • C.OTO 1 000
1 690 :I F Q•- " ZZ Z " THEN c;oTO 1 000 ELSE L.ET

D•< TYPES >-Q• • L.ET TYPES-TYPES+ 1 • CLS• c;OTO
1 640

1 700 GOTO 1 000

You may notice the similarity between this module and the equivalent one
in Unifile, since the object of both is to initialise variables and to store
certain user- defined prompts for later use in the program. The use of the
variables will be discussed in the course of the commentary on the
program.

Commentary
Lines 164 0-169 0: Each answer may, if the user wishes, be given one of ten
types whose names are user-defined. These types may be used later on to
make the tests generated more difficult. The types input should reflect
natural groupings into which the questions and answers fall. Types do not
have to be input and, if they are not, no reference is made to types when
inputting data.

Testing Module 4.1.4

You should now be able to input a format for the program, including the
names of up to ten types.

MODULE 4. 1.5

90

2000 REM************************
20 1 0 REM REM X NPUT OF NEW :ITEMS

Chapter 4 Easy education

2020 REM************************
2030 LET F•-"NEW :rTEMS" • LET P 1 - 1 , c::osue 7
000
2040 PR :I NT • PRINT " ' zzz • TO QUIT . "
20:50 PR :I NT • PR :I NT NFIME•< 0 > , " • " , • :INPUT T 1 •
2060 IF J:TEMS>-:500 THEN P R J: NT • PRJ:NT "NO
ROOM FOR MORE J:TEMS . " • C::OTO 2::230
2070 :IF T 1 • - " ZZ Z " THEN GOTO 22:30
2080 PR X NT , PRJ:NT NAME•< 1 > J " • "J , I NPUT T2•
209'0 :I F D• < 0 >- " " THEN LET T-0 • GOTO 2 1 80
::2: 1 00 CLS • LET F•-"TYPE" • LET P J. -0 , c::osue 70
00
2 1 1 0 FOR 1 -0 TO TYPES- 1 • P R: I NT i: - 1 J " >" , D•
< J: > • NEXT J:
2 1 20 PR X NT NAME•< 0 >, " • " J T 1 •
2 1 30 P R X NT NAME•< 1 > , " • " J T:2:•
2 1 40 XNPIJT "TYPE FOR TH X S :ITEM • " , T
2 1 :50 CLS • LET F•-"NEW :I T E M " • LET P 1 - 1 • C::OSU
e 7000
:2: 1 60 PR :t NT • PR X NT NAME•< 0 > , " , "J T l •
::2: 1 70 PR X NT • PR X NT NAME•< 1 > , " , " J T2:•
2 1 80 :IF D•< 0 >< >" " THEN PRJ:NT , PRINT "TYPE
, " , D•< T - 1 >

::2: 1 51'0 PRINT • X NPUT "ARE THESE CORRECT c: v....-N
> , " J Q• • CLS • :I F Cl•< > " Y " THEN C:OTO ::2:000

2200 J:F D•< 0 >< >"" TI-IEN LET DC: 0 . T - 1 >-oc: e ,
T-J. >+ l • LET T 1 •-CHR•< 49+T- 1 >+T l• • ELSE LET

T 1 • - " "+T 1 •
22 1 0 c:osue 2:500
2:220 LET :I TEMS- X TEMS+ J. • C::OTO 2000
2:2:30 LET suM- 1
2::2:40 FOR x -e TO SI'
22:50 LET OC: 1 , X >-SUM
2260 LET SUM-SUM+OC: 0 , J: >
2:2:70 NEXT J:
2:2:80 RETURN

Once again the similarities between this module and the equivalent one in
Uni file should be obvious. Prompts already defined by the user are used to
structure what is input.

Commentary

Line 2200: The array D is used to store two sets of figures. In D(0,etc) is
stored the number of items in each of the types defined by the user. The
type of the answer is attached to the answer by means of a single character
flag which is a number from O to 9. Note the use of the CHR$ function to
achieve this - using STR$ would mean having to deal with the space that
this function tags onto the front of numbers.

Lines 2230-2270: When the user quits the module, the second half of the
array D is updated. This holds the start positions of each type group. This is
arrived at by simply successively adding the number of items in each type
group to the variable SUM.

Testing Module 4. 1.5

Insertion of a temporary line 2500 RETURN should enable you to input
items to the program under your specified headings, though these will not
be stored anywhere.

MODULE 4. l .6

�:500 REM************************
Z � 1 0 REM B :I NARY SEARCH
2�20 REM************************

91

The Working Dragon

2�30 LET POWER- INT< LOG< ITEMS- 1 >-LOG< 2 > >
2�40 LET SEARCH-2�POWER
2��0 FOR I-POWER- 1 TO 0 STEP - 1
2�60 I F A•< SEARCH >< T 1 • THEN LET SEARCH-s
EFIRCH+2.-..I
2�70 IF A9< SEARCH > >T 1 • THEN LET SEARCH-S
EARCH-2-.I
2�90 IF SEARCH< 1 THEN LET SEARCH- 1
2�90 IF SEARCH >ITEMS- 1 THEN LET SEARCH- I
TEMS- 1
2600 NEXT I
2610 IF A•< SEARCH >< T l • THEN LET SEARCH-S
EARCH+ 1
2620 FOR I-ITEMS TO INT(6EARCH > + 1 STEP -
1 • LET A•< I >-A•< I- 1 > • LET B•< x >-e•< I - l > • NE
XT I
2630 LET A•< SEARCH >-T 1 • • LET e•< SEARCH �-T
2•
2640 RETURN
26�0 R ETURN

A standard binary search module. Note that items are stored in
alphabetical order of answers and that, since the type of the item is
attached to the front of the answer as a single character, the items are in
fact stored in order of type. If you do not enter any types, the items will be
stored in straight alphabetical order of answer.

Testing Module 4.1 .6
You should now be able to input answers which will be properly inserted
into the main arrays, A$ and 8$.

MODULE 4 . 1 .7

3000 REM************************
30 1 0 REM USER SEARCH
3020 REM************************
:3030 LET FS-"SEARCH" LET P 1 -1 • GOSUB 700
:3040 PR I t T l'.i! 1 �*32 _ , •• TOTAL I TEMS • • � I TEMS
"
:30�0 G! 3*32 , " > ' ENTER "' FOR NEXT 1:
EM"
:3060 PRINT " >POS I T I VE OR NEGATIVE NUMB
R TO MOVE POINTER ·'
:307"0 PR I NT •• > ' ODD ' T O DELETE ITE M • •
3080 PRINT " > ' ZZZ ' T O Q U I T l="UNCT l: ON "
3090 PRINT STRING•< 32,CHR•< l �G >>

� ! 'i': ��i t-��
E

�
R

��;�, " ENTRY NO • - . : SEARCH
:3 1 2 0 PRINT MID•< A•< SEARCH>,2 >
3 1 30 PRINT B•< SEARCH>
3 1 40 LET TEMP-VAL< LEFT!9< A$< SEARCH > � 1 > >
3 1 �0 IF LEFT•< A•< SEARCH > , 1 >< > " ' "' THEN PI
INT o•< TEMP ::,
3 1 €0 INPUT "WHICH DC) YOU REQUIRE , •• , ss
3170 IF s•- · · o o o ·· THEN LET D< 0 � TEMP ::--o< 0
TEMP ::,-1 , FOR I-SEARCH TO ITEMS-2• LET A5C
>-A$< I+ l > • LET B•< I ::--B•< I+1>• NE�T I L ET

TEMS-ITEMS- l · Gosue 2230• RETURN
3 1 00 IF S$- " ZZ z • • THEN RETURN
:3 1 90 IF S•< > •" " THEN GOTO 32:30
:3200 LET SEARCH-SEARCH - 1
:32 1 0 I F SEARCH- I TEMS-1 THEN RETURN
3220 GOT0::3 1 1 0
:3230 LET SEARCH-SEARCH+VAL< S• >
:3240 X F SEARCH>ITEMS-2 THEN LE T SEARCH- 1
TEMS-2
32�0 IF SEARCH< 1 THEN LET SEARCH=1
:3260 GOTO 3 1 1 0

A simple search on the lines o f previous programs, but with the added
facility that the user is able to specify a forward or backward leap through
the file.

92

Chapter 4 tasy education

Testing Module 4. 1 .7
You should now be able to page through the items you enter, jumping
backwards or forwards in the file and to delete items.

MODULE 4. 1.8
��00 REM************************
35 1 0 REM RANDOM QUESTIONS
3�20 REM************************
3�30 LET QUESTION-0
3�40 LET !="$- " QUEST I ONS"' LET P .1 - .1 , GOSU0
000
35�0 PR I NT , INPUT " DO '.-'OU WISH F'OSS X BLE A
NSWERS TO BE DRAWN ONLY FROM TM� SAME

ANSWER T'..-PE < Y/N ::, " � QS • CLS
:3�60 l:F Gl,__,.. ., TMEN LET Q U ES T T ON- l
3�7'0 LET Q l -RND<ITEMS-2 ::,
3580 LET QZ-RND<� ::,- 1
3�90 LET Q < Q 2 ::,-Q .1
:3600 J: F QUEST X ON-0 OR D<0 , VAL< LEFT$< A5< Q
1 ::, • 1 ::, ::, ::,-,: � THEN LET START-0 • LET t lUMBER-IT
EMS-2 • ELSE LET START-D(.l , VAL(L�FT$< A$C Q 1
::,, 1 ::, ::, ::,- 1 ,LET NUMBER-D<0 , VAL< LEFT$'-'. A$'-'. Gl 1 >
' 1 ::, ::, ::,

36 1 0 FOR :r -0 TO 4
3620 X F :r -oz THEN GOT03690
3630 LET PLFICE-STFIRT-RNOC NUMBER ::,
3G40 IF F'LACE�Gl< Q 2 ::, THEN GOTO 3630
36�0 FOR J-0 TO X
3660 I F PLACE-Q < J ::, THEN GOTO 3630
3€-7'0 NEXT J
3680 LET Q(t ::,=PLACE
3690 NEXT T
37'00 PRINT NAME$< 1 ::, _, " , "
37' 1 0 PRXNT B$< O< Gl2 > >
3720 PRXNT STRING$C 32,CHRs< 1 e 1 ::, ::, J
37':::30 PRINT NAME•-:: 0 ::, ; " , "
37'40 FOR I - 1 TO �
37'�0 PRXNT X J " ::, " ; M XD!"li<Fl•<Q O:: 'I - 1 ::, ::, , z ::,
37'60 NE�•:T "I
37'7'0 PRINT " WH X CH DO YOU TH 1NK 1S T H E R X
GHT ANS�.JE�7" I NPIJT" TYPE T N THE NUMBER• " ,
ANSWER
37'80 LET QTOTAL-QTOTAL- 1
37'90 'IF ANSL.JER< >Q:z- 1 THEN PR I NT " 'I Nr:::ORRE
C T . THE RIGHT ANSWER WAS • ' ' ; Q:Z- 1 , • • ::, '' ; M X D
�O:: A$<Q< Q :Z > ::. � 2 ::, GOTO 3020
3800 PR INT " •=o...--r-,a,,:t. " P LA',.- "T504L3C; P20 < 1
2 C ; L403A£ ; A � L2A J L4G£ ; A J L2A ; P 1 0 ; L4G£ ; A J L2
A ; L4G£ , A J 04L2C ; 03L4Fl ; 04C; 03L2A€ ''
38 1 0 LET R X GHT-RIGHT�.l
382:0 INPUT " ' ENTER FOR NEW QUESTION OR

� zz::z: • TO QU I T FUNCT X ON . " ; QS• CLS • :tF Q
""- · · zz :z · · THEt-� RETURN E L S E GOTO c-1!570

This module is the core of the program. Its function is to generate the
random tests according to instructions laid down by the user.

Commentary
Line 3550: Tests can take two forms. Potential answers can be drawn from
the whole file of possible answers, in which case the test is likely to be fairly
easy, for the simple reason that a fair number of absurd answers may be
generated if the questions and answers cover a wide range. Answers may,
however, be drawn only from the same type if the user so specifies. In this
case, answers are likely to be more similar and the tests accordingly more
difficult.

93

The Working Dragon

Lines 3570-3590: These three lines generate a random number which is the
address of an item in the file, then a random place for it in thearrayQ. Note
that RND(5) -l is not quite as silly as it sounds - it is not equal to RND(4),
since RND(4) can never equal zero.

Line 3 600: This line determines whether the user has asked for the harder
type of test and whether there are in fact five items in the group from which
the first random question has been chosen. If both conditions are met then
the variable START is set to the first item in the group and the variable
NUMBER is set to equal the number of items within the group. If the user
has not specified the harder test, or if there are not five items in the group,
then START is set to the beginning of the file and NUMBER to the total
number of items within the file.

Lines 3 610-3 690: The rest of the array Q is filled with the addresses of
answers randomly chosen from the area of the file indicated by START
and NUMBER, with checks to see that answers are not duplicated.

Lines 3700-3770: The question and the five possible answers are printed
on the screen, with a prompt to input the number of the correct answer.

Lines 3790-3800 : Depending on whether the right answer is given, the user
is either simply informed of the right answer or is rewarded with a cheery
tune to indicate success.

Testing Module 4. 1.8

If you have previously saved some data, you should now be in a position to
generate some tests, either hard Or easy.

MODULE 4.l.9
4000 REM************k***********
40 1 0 REM scot=.:E
4020 REM****************�k******34 1 0 LET

F""""' '• SCORE•• • LET P 1 - 1 GOSUB 7000
4030 PR l'. NT PR l NT . , TOTAL QUEST I ONS , • • ; QTOT
AL
4040 PR I N T ' " CORRECT ANSWERS ·• . R r GHT
40�0 PR l NT · PR l N T " ' SCORE , . , ; I NTO:: < < R·l: GHT-0
TOTAL..---� :;,......-.;: QTOTAL* . E< -:,. ;:,�: 1 00 > � ., % .,
4060 PR I NT , l t-�PUT " DO YOU �·J I SH TO Z�Rn SC
ORE < Y/N> · '' � Q$ • IF 0$� > '' Y '· THEN RETURN EL
SE LET QTOTAL-0 · LET R I GHT-0 RE'"TI IRM

During the course of the previous module the variables QTOT AL and
RIGHT were updated for each question and for each right answer
respectively. They are now used to make an assessment of the user's
performance, with allowance made for the 200/o correct answers that could
be obtained by simply pressing the same button each time.

94

Chapter 4 1:ssy eoucauon

Testing Module 4. /.9

You should now be able to obtain an assessment of your performance in a
test and to reset your score if you wish. If this module functions correctly
then the program is ready for use.

Summary
This is actually quite a powerful program, but remember that you will only
confirm that for yourself by entering enough data to make it enjoyable.
The program is also a reminder that wherever possible, if you are going to
write a complex program, you may as well go a little further and make it a
general purpose one, thus saving yourself a great deal of work in the
future.

Going further

I) As presently constituted, the program checks to see that the same
answer is not displayed twice for a question, but not that two answers from
different positions in the file are actually identical. Could you insert a
check into Module 7 to ensure that identical answers are not printed?
2) The question of rewards for success is an interesting one - adults seem
to find success its own reward when playing with, I mean using, this
program. For children, however, all manner of rewards are possible. What
about tagging a short game onto the program which would be accessed for
three minutes every time 10 right answers had been supplied.

4.2 WORDS

Once you have a program that works well, you soon find that it suggests
other uses to you. Such was the case with MultiQ and the result was this
simple aid to learning to read which, with the help of an adult, can be fun
and a step forward for kids in the earliest stages of reading. The only real
difference between this program and MultiQ is that the questions take the
form of simple pictures and the answers are possible words to go with the
pictures.

The pictures are no more than the output of another program we have
already discussed, Artist, picked up from tape and loaded into this
program's dictionary. The capacity of the program as presented here is I 00
words, though another set could be picked up from tape if so desired.

Designs meant to be used by this program need to use only the bottom I 0
lines of the screen, since the top six are used to set the questions.

MODULE 4.2.1
6000 REM*******�****************
60 1 0 REM DATA FILES
6020 REM************************
6030 MOTOR ON AUD X O ON • INPUT "POSITION T
APE TI-IEN PRESS e-...-.1;..,..,- < MOTOR XS ON > , " > QS
• MOTOR OFF

95

The Working Dragon

6040 PRJ:NT• J: NPUT "PLACE RECORDER J: N CORR
ECT . MODE THEN PRESS .--.-.t-r" > QS
60!50 PR J: t-�T • PR J: NT " FUNCT l ONS A'·..'A l LAB LE , ",
" l. :,SAVE DATA "', .• "2 ::-LOAD DATA" • I NPUT "1.-JH I .-:
H DO �,.-ou R EC!UIRE • " > Q • ON Q GOTO 6070 , 6 1 80
6060 RETURN
&070 MOTOR ON • FOR I-1 T O 1 0000• NEXT l
6080 OPEN '' 0 '',£- 1 , ''WORDS''
6090 PRINT £-1 ,ITEMS
6 1 00 FOR 1 -0 TO ITEMS- 1
6 1 1 0 PRINT £ - 1 ,AS< 1 ,2 :,,As< I, 1 > - LE N �- A-.�� 1
, 1),),
G l. 20 FOR J - 1 0 TO LEN< A.S<'. I , 1 > >

� !�� �:��
T

J
£- 1 ,ASC<M I D$<As< I, 1

G l. !50 NEXT I
6 1 60 CLOSE£- 1
6 1 70 RE;:TURN
6 1 80 PCLEAR1 CLEAR 20000 • LE T FLAG - 1 GOTO

] �40
6 1 90 OPEN " I" , £ - 1 , " WORDS"
6200 INPUT £ - 1 , I TEMS
62 1 0 FOR I -0 TO I TEMS- 1
6220 I NPUT £ - 1 ,AS< I ,2 > , AS< l , 1 ::,,NN • X F L EN
< A$< I, 1 ::.,),=El THEt-� LET AS< I , 1 ::,-AS< T . t -:.0 + " "
6230 FOR J- 1 0 TO NN
:z;;� INPUT :E- 1 , C , LET A!!IIC I , 1 >-As<'. I , l. >+CHR

62�0 NEXT J , l
6260 CLOSE:E-1
627'0 GOTO 1 000

A standard data-file module.

MODULE 4.2.2
7000 REM************************
70 1 0 REM FORMAT T I TLES
7020 REM************************
7030 LET PZ- 1 4-INT(LEN<F•>-2>
7040 PR X NT @ 32*P 1+P2 , STRING�< LEN< Fm >+2 ,
1 8 !5 :,
70�0 PRINT @ 32*< P 1 + l. >+P2,CHR9<'. 1 8!5 ::-+FS+C
HRS< 1 8!5 >
7060 PR I �-�T Ci' 32*< P 1 +2 >+P:2:, STR X t-lG,_<'. LEN< F$
:,+2 . l. 8!5 ::>

7070 RETURN

A standard title-formatting module.

MODULE 4.2.3

1 000 REM************************
1 0 1 0 REM MENU
1 020 REM************************
1 0:30 CLS • LET F!!lll-"WORDS" , LE T P l. - l. • GOSUB 7
000
1040 P R X NT• PR X NT " COMMANDS AVAILABLE• "
1 0�0 PRINT " 1 ::-INPUT NEL.J ITEMS"
1 060 P R X NT " 2 >SEARCH/DELETE"
1 070 PRINT •• 3 >GENERATE QUEST l ON S "
1 090 PRINT " 4 ::-D I SPLAY OR RESET SCORE"
1 090 P R J: NT " � ::-DATA F X LE S "
1 1 00 PRINT '' 6 ::-IN X T X A L X SE '•
1 1 1 0 PR I NT " ? >STOP"
1 1 20 P R X NT,INPUT " WH X CH DO YOU R EQ U J: RE "
� z CLS
1 1 30 J:F Z<6 THEN ON Z GOSUB 2000 � 2!500 , 3�

00 � 4000� 6000• GOTO 1 000
1 1 40 ON Z-!5 GOTO 1 �00 , 1 1 60
1 1 !!50 GOTO 1 000
1 1 60 LET F!!lll-"WORDS " • LE T P 1 -6 • GOSUB 7000
1 1 70 STOP

A standard menu module.

96

Chapter 4 Easy education

MODULE 4.2.4
1 �00 REM************************
1 � 1 0 REM INITIALISE
1�20 REM************************
1�30 PCLEAR 1 • CLEAR 20000 LET FLAG-0
1�40 DIM G:J< 4 >
1��0 LET LAST - 1
1 �60 D I M A•< 1 00 , 2 >
1 �70 IF FLAG-0 THEN GOTO 1 000 ELSE GOTO
15 1 90

This module initialises the program variables, including the main array
A$. You may note in relation to the use of this array that I have committed
the cardinal crime of ignoring the zero element.

MODULE 4. 2.5
3000 REM************************
30 1 0 REM PRINT DES I GN
3020 REM************************
3030 LET Y-VAL< LEFTSC DESIGNS,3>>
3040 LET X-VAL< MID•< DESIGN• , 4 , 3 > �
30�0 LET z-VALC M I OSC DES I GN• , 7 , 3 > >
3060 FOR I - Y TO Y+C LENC DESIGN• >-9 >/Z - 1
3070 FOR J - X TO X+Z- 1
3080 POKEC 1 024+32* I + J >,ASCC M I D•<DES I GNS
S 0+< I -Y>*Z+J-X , 1 >>
:.3090 NEXT J , :t
3 100 RETURN

If you remember the Artist program then you will also remember the
function of this module, since it is the same as the program section in the
earlier program which reassures the user that the correct design has been
stored in a string. For commentary refer to Artist.

MODULE 4.2.6

�000 REM********:it::+:**************
2 0 1 0 REM INPUT OF NEW ITEMS
2020 REM************************
2030 CLS • LET F•- .. NEL.., ITEMS .. • LET P 1 -0 • Gas
us 7'000
2040 MOTOR ON , AUD I O ON • INPUT " P O S I TION
!APE THEN PRESS ..-..-.t..-r C MOTOR I S ON> , " ; Q

20�0 MOTOR OFF • INPUT •• puT RECORDER INT O
PLAY MODE THENPRESS ..-nt...-r " � GI•
2060 OPEN • • I " .• £: - 1 , " DESIGN "
2070 INPUT £ - 1 , DES I GN• • IF LEN< DESIGN•>-8

-Y-HEN LET DESIGN•-DES :t GN•+ " ••
2080 IF EOFC - 1 > THEN GOTO 2 1 2 0
2090 INPUT £: - 1 , N
2 1 00 LET DES I GN•-DESIGN•+CHR•< N>
2 1 1 0 GOTO 2080
2 120 CLOSE.£:- 1
2 130 CLS0
2 140 GOSUB 3000
2 1 -::50 PRINT � 0, •• •• ; INPUT "DO YOU WANT TH
IS C Y/N >• '' ; Gl• • I F Gl•< > •• y •• THEN RETURN

2 1 60 l:NPUT ·· woRD TO GO W I TH THIS PICTURE
" � W$

2 1 70 INPUT ··Is THIS CORRECT C Y/t---1 > • •• ; Qllli • I
F GlS< > " Y •' THEN GiOTO 2 1 60
2 1 80 LET A•� l: TEMS , 1 >-DESIGN• • LET A•C ITEM
5 , 2 >-W• • LET l: TEMS-ITEM S + 1
:2 1 90 INPIJT " ANOTHER PICTURE C Y/N> • •• _, Q• • l
F GlS< > " Y " THEN RETURN
:2200 GOTO 2030

97

The Working Dragon

The purpose of this module is to load individual designs created by the
Artist program and to allow them to be labelled with a word and then
stored in the main array. Note that there is no sort -items are inserted one
after another.

Commentary

Lines 2080-2120: You may note something new here, the use of IF
EOF(- 1) . All this means is that instead of reading a variable from tape
which tells the programs how many characters are to be read and added to
DESIGN$, we simply go on reading until the End of File marker is found,
then stop.

Testing Module 4.2.6

We have come a long way into the program without testing anything but
most of the material has been familiar, so there should be no major
problems. You should now be in a position, having initialised the program,
to pick up designs from tape which were created earlier using Artist and to
supply a name to go with them, though you cannot yet display the file into
which they are placed except in direct mode.

MODULE 4.2. 7
2�00 REM************************2:5 1 0 REM USER SEARCH 2:520 REM************************2:530 IF I TEMS-0 THEN RETURN
�;;: �E�e���T bES I GN•-A•< s . 1 � • Gosue 3000• PR I NT � 1 :5*32 . A•< s . 2 � � 2:5€0 F>R I NT Cli! 0 , " > >-..-.t-,..-. FOR NEXT I TEM " 2:570 PRINT '' > >POS . OR NEG . NUMBER TO MOVE . " 2:500 PRINT " > > ' DOD' TO DELETE I TEM. " 2:59'0 PRINT " > > " ZZZ' TO QU I T FUNCT I ON . " :2€00 I NPUT Q• :26 1 0 IF Q·- ··oDD" THEN FOR I -s TO I TEMS- 1 , LET A•< I , 1 >-A•< I - 1 , 1 > • LET A•< I , 2 >-A•< I +1 , 2 > • NEXT • LET I TEMS- I TEMS-1 ;2620 IF Q•- " ZZZ" TI--IEN RETURN 2630 IF Q __ THEN LET s-s- 1 2640 LET s-s-vAL< Q• > • I F S > I TEMS- 1ET s-I TEMS- 1 26�0 I F S� 0 THEN LET S-0 :2660 GOTO 2:5!!50

A simple user search module.

Testing Module 4.2. 7
You should now be able to page through any items you load and delete at
will.

MODULE 4.2.8

98

�:500 REM************************3:5 1 0 REM RANDOM QUEST I ONS 3:520 REM************************3!!530 LET Q 1 -RND< I TEMS > - 1 3!!540 LET Q:2-RND< :5 >- 1

:'.3��0 LET Q < Q 2 >-Q 1
3�60 FOR 1 -0 TO 4
3�70 IF I-Q.2 THEN GOT03640
3�90 LET F'LACE-RNDC ITEMS >- 1
3�90 IF F'LACE-Q C Q .2 > THEN GOTO 3�90
3600 FOR .J-0 TO I
36 1 0 IF PLACE-QC .J> THEN GOTO 3�00
3620 NEXT .J
3630 LET Q C I >-PLACE
:3640 NEXT I
36�0 LET DESIGN•-A•< Q 1 .• 1 >, CLS0 , GOSUB
"
3660 FOR 1 -0 TO 4 • PRINT � 1 * 32 , A•< O< I> , 2
:;> ; , t-�EXT

3670 PRINT (2 �*32, " " > , INPUT " WH I CH ONE <
z-sTOP > , " , c• , IF c•-"Z" THEN CLS , FOR 1 -0
TO 47'9 • PRINT m I . CHR•<RNDC 1 2a >- 1 27' > • NE><
T • F'RINT m 8*32- 1 0 , " Qoe>e:H:::> ,.. .- " _, • FOR I- 1 TO
�000 • NEXT • CLS • STOP
3600 LET QSUM-QSUM - 1
3690 I F c•< >A•<Q 1 , 2> THEN CLS0 • PRINT l'.2 0
• "'WRONG" , FOR 1 - 1 TO 1 000 , NEXT , GOTO 3�00
3700 PR I NT •• -=:or-r-.-c:t. " , PLAY "T�04L3C > F'.20 ; L
Z C > L403A£ > A > L2 A ; L4G £ > A > L2 A > F' 1 0 ; L4G£ ; A ; L2
A , L4G£ , A J 04L2C , 03L4A ; 04C , 03L2A£''
37 1 0 LET RIGHT-RIGHT- 1
3720 GOTO 3�00

Equivalent to the random question module in MultiQ, except that there is
no provision for the harder type of test, so the module is simpler. The
module also says a rainbow goodbye when the user quits - it does not
return to the main menu so that there is a smaller chance of someone
inadvertently wiping out the data.

Testing Module 4.2.8

The program should now choose a random design and print it at the
bottom of the screen, then print five words to choose from, one of which
must be input.

MODULE 4.2.9
4000 REM************************
40 1 0 REM SCORE
4020 REM************************
4030 IF QSUM-0 THEN RETURN
4040 LET F • - " SCORE " • LET P 1 - 1 • GOSUB 7000
40�0 PRINT • PRINT "TOTAL Q UESTIONS • " > Q BUM
40€0 PRINT " CORRECT ANSWERS " " > RIGHT
407'0 PRINT • PRINT ''SCORE • '' ; INTC C C RIGHT-Q
SUM/�>....--,::: QSUM* - 9 > >* 1 00 >; " %"
4080 PRINT • INPUT " DO YOU WISH TO ZERO SC
ORE < Y....--N > • " ., Q . , J: F Q • < >"Y" THEN RETURN E
LSE LET QSUM-0 • LET RIGHT-0 • RETURN

The score-keeping module, as in the previous program.

Testing Module 4.2.9

You should now be able to receive a score for any tests undertaken.

Summary

This again is a program which requires some work if it is to be of any use
since the small designs it uses do take some time to create. In creating the
designs it is especially important to prepare them properly in advance

99

before sitting down with the Artist program. U se of squared paper can save
a lot of frustration when it comes to actually creating the designs before
they are entered.

If you don't have any children the right age, then why not design some
crude representations of electrical symbols, and have the program set some
tests about them?

Going further
I) Your children may be more familiar with lower-case letters. Could you
alter the program so that the output is in lower-case?
2) The question of rewards rears its head even more pronouncedly in
relation to this program. Try to think how winning could be made a bit
more of a thrill.

4.3 WHERE?

This is an uncomplicated program which quite effectively tests your
knowledge of geography, or at least of the location of cities in a range of
countries. The program makes use of the second format of design output
by the Artist program, the map save.

MODULE 4.3.1
7 0 0 0 REM***********************�
70 1 0 REM FORMAT TITLES
7020 REM*****�******************
7030 LET P2- 1 4-INT< LEN<F S >/2 >
7040 PRINT @ 32*P 1 -PZ . STRING$C LENC F $ �-2 .
:1.8�>
70�0 PRINT � 32*< P 1 - 1 >-P2 . CHR$C 1 8�>-F$-C
HR!l>C 1 8� >
70€0 PRINT @ 32*<P 1 -z>-P2 . STR I NG�C LENC F$
>+-2 , 1 8� >
7070 RETURt0 �

A standard title formatting module.

MODULE 4.3.2

6000 REM************************
60 1 0 REM DATA FILES
6020 REM************************
6030 MOTOR ON• RUO l O OH, INPUT " "POS :t T T ON T
APE THEN PRESS .-)·,t..-r- < MOTOR TS ON �, " , Q!llo
,MOTOR OFF
6040 PR I NT, INPUT '' PLACE RECORDER IN CORR
ECT MODE THEN PRESS .,,-r.t•..-- " � CI•
60�0 PR I NT , PR :r NT ' ' FUNCTIONS A',�A "I LAFl'I E: • ••
" 1 ::.SFtVE DATA • • � • • • 2),LOAD OFITFt" INPUT " L-..IH IC
H 00 YOU REQU :f.R:E " , Q • Ohl Q GOTO €070 ., 6 1 �0
60G0 RETURN
6070 MOTOR ON• FOR 1 - 1 TO 1 0000 • NEXT I
6080 OPEN "0 •• • :E: - 1 • • • L,JHERE"
6090 PRINT :E:- 1 , CTOTAL
6 1 00 FOR X -0 TO CTOTAL- 1 • FOR J-0 TO 1 3
6 1 1 0 FOR K - 1 T O 32
6 1 :20 PRINT £ - 1 . FtSC< M :I DS< 6!$C I . J >. K. 1 ::, >
6 1 30 NEXT K . J , X
6 1 40 CLOSE:E:- 1 • RETURN
6 1 �0 PCLEAR 1 • CLEAR 1 8000 • LET FLAG- 1 • GOTO

1 �40
6 1 60 OPEN " :t " . £- 1 . " �-..IHERE "
6 1 70 J: NPUT :E:- 1 . CTOTAL

100

6 1. 80
6 J. 90
G::200

FOR r -0 T O CTOTAL - J. • FOR J-0 T O 1. 3
LET B•< I • . ..J > - " " FOR K - t. TO 32
IF EOFC - 1. > THEN GOTO 6230

!Z�:'� INPUT £ - 1. , C • LET es< I . J >-B•< I . J �-cHR

'5220
.S2:30

NEXT K , ..J , I
CLOSE£- 1. • GOTO 1.000

A standard data-file module.

MODULE 4.3.3

1. 000 REM************************
1. 0 1. 0 REM MEt-�U
1. 020 REM*****W********�'*********
t. 0:30 CLS LET Fs:-"WHERE" , LET P t. - 1. , Go:::aue
000
t. 040 PRINT, PRINT "COMMAMDS A'v"A 1: L ABLE
t.0:50 PRINT " l. >LOAD NEW COUNTRV"
1 060 PRINT 2 >RECORD NEW CITIES'"

1070 PRINT 3 >SET QUEST 1: 0t�s··
1080 PRINT 4 >DATA FILES "'
1 090 PR I NT '' � > I NI T I ALISE''
1 100 PRINT 6 >STOP '"
1 110 PR I NT • INPUT " ' W HICH DO YOU REQ U I RE • ''
.1 Z• C LS
1120 ON Z GOSUB 2000,2000 . 3000 . 6000 , 1�00
• J. 1"":50
J. 140 GOTO 1. 000
1 1�0 CLS LET F$- " WORC.�s ·· , LET P 1 - .1. • GOSUB 7
000
1 1 60 LET F$-"PROGRAM TERMINATED " • LET P l. -

10 , GOSUB 7000
1 170 END

A standard menu module.

MODULE 4.3.4
i �00 REM************************
1 �10 REM INITIALISE
1�20 REM************************
1 �30 PCLEAR 1 • CLEAR 22000• LET FLAG-0
1�40 D I M e•c 2 0 . t. 3 >
1 ��0 IF F L A G - 1 THEN GOTO 6160 ELSE GOTO
:1 000

The country maps generated by Artist will be stored in the array B$, each of
its 21 elements holding 14 lines of an individual map.

MODULE 4.3.5

2000 REM************************
20 1 0 REM LOAD NEW COUNTRY
2020 REM************************
2030 LET F$-"NEW COUNTRIES"• LET P 1 - 1 • GOS
UB 7'000
2040 PR I NT • INPUT " PLACE T O LOAD T H I S COU
NTRY • " � PLACE• LET PLACE-f'>LACE-1
20�0 PRINT• MOTOR ON • AUD I O ON• INPUT '" POST
TION TAPE THEN PRESS �nt•.,.. < MOTOR IS ON
;:, ' .. .' Q$

2060 MOTOR OFF• INPUT " PUT RECORDER
PLAY MODE THENPRESS .,,..,...,t .. .,.." , Q S
2070 OPEN " I " , £-1 � "MAP"
2080 FOR I-0 T O 13 • LET B•< PLACE , I �-" " • FO
R J-0 TO 3 1
2090 I F EOF< - 1 > THEN GOTO 2120
2 1 00 INPUT £ - :1 , CC • LET B•< PLACE . L �-B$< PLA
CE • I >-+-CHR•< CC >
2 1 1 0 NEXT J, J:
2 1 20 CLOSE£-1
2130 CLS0 • FOR I-0 T O 13 • PRINT � I*32 . BS<
PLACE � l: > � • NE><T

IOI

2 1 40 FOR I - 1 TO -�000• NEXT
2 :1 �0 PRINT (2 1 �*32, "" ., , INPUT " ACCEPTABLE

< v...--N > ' "; Q. IF a•- " Y" THEN LET CTOTAL-CT
O T A L + :l
:2 1 60 RETURN

This module picks up the maps designed with the use of Artist and loads
them into the array B$. Note that the user is asked to specify the position at
which the map is to be loaded - there is no automatic mechanism for
allocating it a place.

Testing Module 4.3.5

You should now be in a position to load into the program some maps
created with the aid of Artist. The first of these should be loaded at one.
You should also be prompted to supply a country name to correspond with
the map.

MODULE 4.3.6
2�00 REM************************
2� 1 0 REM RECORD CITIES
:2�:20 REM************************

2=>30 INPUT "NUMBER OF COUNTRY ' ,. ; COUNTRY
LET COUNTRY-COUNTRY- :l
:2�40 CLS0 • FOR 1 - 0 T O 1 3• PRINT B•< COUNTRY
J I > ; • NEXT• LET x-e · LET Y-0

25::50 LET T•-I NKEY• , IF T!II< >" " THEt-� GOTO :2
600
:2�60 LET P-PEEK < :l 024-Y*3:2+X >
2�70 POKE< 1 024-Y*32+X> J 1 0 6 FOR I- :l TO 2�
• NEXT

:2�90 POKE< 1 0:24-Y*32+X > J P• FOR 1 - 1 TO 2� • N
EXT
:2�90 CaOTO :2��0
2600 LET x-x-< T•-CHR•< 9 >>+< T•-cHR$< 8>>•L
ET x-x-3:2*< X > 3 1 >-32*< X<0>
:2 6 1 0 LET Y-Y-< T•-CHR•< :t 0>>-< T•-CHR•< 94>>
• LET Y-Y+ :l 4*< Y > 1 3>- 1 4*< Y< 0 >

2620 PRINT C!i'! :1 =>*32: J " X-" ; X ., ••

:2630 IF T•< >CHR•< :t3> THEN GOTO 2��0
:2640 CLS • PRINT "RECORD THE FOLLOWING DET
AILS IN A d�t- STATEMENTIN THE SECTION
BEG INNING AT L l: NE "; :1 0000-< COUNTRY- :l >* 1 0
0; .. ' ..
;26!!50 PRINT "CITY NAME , X CO-ORDINATE , Y CO
-ORDINATE"
;2660 PR J: NT • PR J: N T "THE NUMBEFi': J:N THE DATA

STATMENT AT "; 1 0000-< COUNTR',..+ 1 >* 1 00; " S
HOULD BE INCREASED BY 1 . "
2670 PR J: N T " THE SECOND ITEM J: N THAT LINE

SHOULD BE THE COUNTRY NAME E. G . ' " ;
2680 PR I NT " '!!5 J FRANCE"
2690 PR I N T '' T H I S WOULD MEAN THAT � CITIE
S HAD BEEN RECORDED FOR FRANCE . "
:2700 PRINT • PR i t-lT "X- " ; X ; "...--...--v- " � V ; • INPUT
"<. .-...-.t.-.- TO CON T . '.>" ; Q!!lli
;Z. 7 1 0 �ETURN

The purpose of this module is to move a flashing cursor around any of the
maps stored by the program and to display the co-ordinates of the cursor.
On the input of ENTER, the user is given instructions as to the manner in
which details of countries and cities are to be recorded in DATA
statements. Note that the best use is made of this module by first ensuring
that the maps currently available are all loaded into the program and saved
using the data-file module.

102

Chapter 4 Easy education

Then use this module to record the co-ordinates of any cities you wish to
enter, keeping the co-ordinates and names on a piece of paper until you
have completed them all. Entering the DATA statements referred to every
time you have established the co-ordinates of a new city will mean that you
will lose all the program data and it will have to be loaded from tape each
time.

The DAT A about countries is recorded in a section at the end of the
program which, for the sake of clarity you are instructed to begin at 10000.
Each country has a space of 100 lines, beginning at 10100 for thecotintry in
file space zero, 1 0200 for the country in file space one and so on. A typical
entry for a country would look like this:

10200 DATA 5,NEVERLAND
10202 DATA CITYl,12,8
10204 DATA CITY2,5,7
10206 DATA CITY3,6,10
10208 DATA CITY4, 11,3
10210 DATA CITYS,15,27

What this means is that the country is called Neverland, that it has five
cities and that their names and X,Y co-ordinates (as determined by using
this module) are as shown in the next five lines.

By employing DATA statements we do away with the need for modules
to insert and delete data or to page through it- the work is done by the
user. DATA statements can be abused, and often are, but where data is not
expected to have to be entered frequently, they can be a time saver in terms
of programming and a space saver in terms of the program functions that
can be dispensed with.

Tes1ing Module 4.3.6

You should now be able to specify a map that is contained within the file
and move a flashing cursor around it. Pressing ENTER should lead to
instructions being displayed about the necessary DATA statements.

MODULE 4.3.7

3000 REM************************
30 1 0 REM GENERATE QUESTIONS
3020 REM************************
3030 LET COUNTRY-RND<CTOTAL>-1
:;3040 GOSUB 3 1 70
30::;0 CLS0 • FOR I - 0 TO 1 3 • PR I NT e•<COUNTRY
� I > ; • NEXT
3060 POKE< 1 024+32*Y+X > � 1 06
307"0 FOR I - 1 TO 3
3080 PR I NT � 1 4*32 , STR I NG* (63 , CHR•< 1 28 > >

3090 LET Q T OTAL-QTOTAL - 1 • PR I NT � 1 4*32,'"
" J • I NPUT " N AME OF C I TY • " ; Q• • I F Q•-M• THE
N GOTO 3 1 30
3 1 00 LET WRONG-WRONG+ 1 • PR I NT a!! 1 ::;*32 , " WR
ONG " J • FOR J - 1 TO 1 000 • NEXT
3 1 1 0 NEXT I
3 1 20 PRINT a!! 1 ::;*32 , " C I TY WAS " J M• J • I NPUT

" < e-nt.-.- > " J Q • • GOTO 3 1 40

103

The Working Dragon

3 1 30 PR 1NT o:2 0 � M !lli � " , CORRECT" � , FOR :i - 1 TO
1 000 , NEXT

.S��L:7 ��-:!'" ' � � !'!5�2 ·' .. �- .. � < QTOTAL-�-u:;::oNc; ::,.,...-Q

:3 1 !'!50 1NP'UT " ANOTHER GO < Y.,...-N :>• "" ; G!- · 1 F Q'!I-<
>''Y" THEN RETURN
� 1 60 1 NPUT ''SAME COUNTRY < Y/N > • "" ; Q $ • 1 F Q
• < >"Y " THEN GOTO 3030 ELSE GOTO 3040
3 1 70 RES:TORE • FOR I-e TO COUNTRY • READ N . N
•• X F I<COUNTRY THEN FOR J - 1 TO N , READ N$
.• N� N • NEXT J. I
3 1 90 FOR I - 1 TO RNDC N >• READ M $. X , Y • NEXT
RETURN

This module selects a random country and, within that country a random
city. A marker is placed at this point and the user is requested to supply the
appropriate name.

Commentary
Lines 3 170-3180: Note that to extract data from the middle of a section of
DATA statements it is necessary to READ the data from the beginning. In
this case the two loops in line 3170 read all the country and city data up to
the country specified in randomly generated number COUNTRY and
then, on the basis of the number of cities specified for that country, line
3180 reads a random number of cities to arrive at the chosen city.

Tes1ing Module 4.3. 7
The program should now generate questions, allowing three attempts
before supplying the answer. The user should be given the opportunity to
specify whether the next question should be drawn from the same country
- if not, the random function may well pick up the same country again
anyway - this is not an error.

Summary
This program raises the interesting question of how far it is desirable to go
in building all the necessary functions into the program rather than
allowing the user to do some of the work. Would the program have been
better with extra modules to cope with the addition, d isplay and deletion of
data for city names and locations? Well in many ways it would have been
better, but would the improvement have been worth the extra time and the
loss of enough memory for two country maps? If you think so, you have
enough examples to work on to insert your own extra modules.

104

CHAPTER 5

High resolution text

Having examined some of the Dragon's very real capabilities in the fields
of both high and low resolution graphics, we turn our attention to an area
where the machine's performance is somewhat lacking compared to some
other popular micro-computers - the mixing of text (that is letters and
numbers) and high resolution graphics on the screen at the same time.

Many of you may be aware that one solution to this irritating limitation
is to use the flexible DRAW command to literally draw letters on the screen
in the high resolution PMODEs. The real disadvantage of this method is
the necessity to go through the painfully slow process of building up the
fairly complex strings that will be drawn and writing them into each new
program which requires some text. In the two programs which follow we
shall attempt to overcome this drawback by providing a simple method of
creating the desired characters , of storing them for subsequent use and of
compiling them into character sets for subsequent use by other programs.
In other words we shall attempt to substantially extend the Dragon's
capabilities.

5.1 . CHARACTERS

The purpose of this program is to allow you to build up any character you
wish which is capable of being fitted into an area on the screen of 32*32
pixels. The actual size of the character when printed on the screen will
depend upon the PM ODE and the scale in use when it is DRA Wn.

MODULE 5. l . 1
1 000 REM************************
1 0 1 0 REM X N X T X RL X SE
1 020 REM************************
1 030 PMODE0 .• 1 , PCLEF'IR 2 • CLEAR 1 000 • PMODE
1 .. 1 • SCREEN 1 • 0 • PCLS-4
1 040 DIM AC 3 1 . 3 1 > • D X M BC 3 1 . 3 1 >
1 0�0 D X M CC 1 27 . 7 >
1 0'50 DRAW ''BM0 . 0"
1 070 FOR I- 1 TO 2
1 080 FOR .J-1 TO 1 ,S • DRAW " C 1 J R3 J 8R 1 J C2 J R3
, BR 1 " • NEXT .J
:1 090 DRAl-1 " BM- 1 28 . +2" • NE><T X
1 1 00 FOR I- 1 TO 2 • FOR .J- 1 TO 1 6 • DRF'IW " C:2
; R3 ; BR 1 J C 1 J R3 J 0R 1 "' • NE><T J
1 1 1 0 DRF'll-1 " BM- 1 28 . +2'' • NEWT X
1 1 20 GET c 0 . 0 >-C 1 27 . 7 > . c
1 1 30 PCLS-4

105

The purpose of this module is to initialise the program variables and to set
up an array which will be used later in the program to reduce the time taken
to print a 3 2 * 3 2 chequerboard design by use of GET and PUT.

Commentary
Line I 0 30 : Since we shall be working with strings we shall need to set aside
more than the basic minimum of string space. The remaining commands
merely set aside sufficient memory space to work in PM ODE I using the
first colour set.

Lines 10 60� 1110: These lines initialise the ORA Wing position to the top
left hand corner of the screen and then ORA W the first two lines of a
chequerboard, one square at a time. You will note once again how a series
of DRAW commands placed on different lines are executed as if they were
part of the same string.

Line 1120: The area of the screen DRAWn upon is 128*8 pixels and this
rectangle is now stored in the array C using the GET command. It would
not be possible to store the whole 3 2 *3 2 matrix in such an array since even
to store only 1116th of it requires over 5,000 bytes of memory.

The heavy memory demand involved in the use of GET is the main
drawback to an otherwise useful feature of the Dragon.

Tes1ing Module 5././
The functions of the various arrays can only be checked later in the process
of entering the program but at this stage the module should visibly draw the
first two lines of a chequerboard on the screen and then clear the screen.

MODULE 5 . 1 .2

�000 REM************************
�0 1 0 REM FUNCT I ONAL SUBROUT I NES
�020 REM************************
"5030 LET D• - " BM " +STR•< >< >+" � " +STR• < V :>+" J "
+ '' 1 D3 ; R 1 , U3 J R 1 , D3 1 R 1 J U 3 ' ' • RETURN

The sole purpose of this module is to define a short string which draws an
inked in square at an appropriate position in the array as defined by the
variables X and Y.

Commentary
Line 5030: This line serves as a useful reminder that the strings used to
control the DRAW command do not have to be cut and dried before
running the program. All the string handling capabilities of the Dragon can
be brought to bear. In this case, values for X and Y are inserted into the
string using the STR$ function. The line is included as a separate one-line

106

Chapter 5 High resolution text

subroutine simply because it is called more than once in the program and it
saves space if it is not spelt out in several places.

Testing Module 5.1.2

The line can be tested after the entry of the next module.

MODULE 5. 1.3
2�00 REM************************
2� 1 0 REM DRF'll_, C:Fit :I D
2�20 REM************************
2�30 PCLS2 • FOP. I -0 TO 1 20 STEP 8 • PUT < 0 •
J �-< 127 , :1 +7 � , C • HEXT :I
:2'�40 DRF'IW " C 1) E'IM 1 :28, 0 J 0 1 28 .• L 1 :28 "
z��0 FOR v - 0 T O 1 :24 STEP 4 • FOR x - 0 TO 1 2
4 STEP 4
2�60 :IF F'IC Y/4 � X/4 �< >0 THEN c:osue �030 • DR
F'll_, •• C 0 J " +D•
2�70 NEXT X , Y • LET x-0 • LET v-e • RETURN

This module places on the screen the whole 3 2*3 2 grid that will be used to
define characters. When later modules have been entered it will also ink in
the squares which define a character.

Commentary

Line 253 0: Using the array C, which holds two lines of the chequerboard
design, this line prints the 3 2 *3 2 grid by PUTting the contents of the array
onto the screen in 1 6 consecutive locations. This is considerably faster than
DRAWing the grid.

Lines 255 0-2570: Using two loops to increment the values of X and Y, the
array A is examined to see if the array element corresponding with each
element in the grid contains something other than a zero. If it does, then
Module 2 is called up and the current values of X and Y incorporated into
0$, which then ORA Ws an inked in square at the appropriate point.

Testing Module 5./.3

The program should now be capable of placing the 3 2*3 2 element grid on
the screen, then stopping with the RETURN without GOSUB error. If you
wish, you can feed some ones into the array A in direct mode, then GOTO
2500. The corresponding squares on the grid should have been inked in.
Note that it takes time to examine the whole array - some 2 0 seconds - so
that a pause does not mean that the program is malfunctioning.

107

The Working Dragon

MODULE 5. 1. 4
1 �00 REM��**********************
t � 1 0 REM CREATE DES I GN
1 !520 REM************************
1. !530 GOSUB 2!500
1.!540 LET x-0 • LET v-0
1. !5!50 LET T•- T NV.EY• , l: F T•< '> " " THEN GOTO 1
1520
1 !5€.0 GOSUB �030
1 !57'0 DRRW ··c0 , · · - o•
1 !580 FOR t - 1. TO 2!5 • NEXT
1 !590 DPRl•J "C " -sTR•< 1 --:: < x-v :,,..--e< > T NT< < x-v ">
.... e, ::, > :--o-
1. '500 FOR T - 1. TO 2!5 • NEXT
1 €. 1. 0 GOTO 1 !5!50
1620 IF A<' V/4 � X --4 :::> ""' 1 T.._.EN DRAW "C0 , "-D•
1630 LET x-X-4*<T•-CHR• < 9 > >-4•<T•-cHR•<S
::, ") • IF Y.>124 THEN LET ><- 1 24
1. 640 JF � < 0 THEN LET x-0
1. '5!50 LET v-Y-4�< T•-CHR•< J 0 > >-4*< T•-cHR•<
�4 "> :> • IF V > 1 24 THEN LET V- 1 24
1 660 IF Y ' 0 THEN LET V-0
t671;?1 1'.F'" T,s:- " 0 " THEN DRRW " C " -STR•< 1 -<<X­

v ") �e< >INT' < X-Y > _,8 "> > >-D• • LET A<Y-4 � X-4 >-0
:1. ,S:�e, IF T"'"- " t " THEN DRRW "C-0 , "-D•• LET R<
...,,_ 4 . :,,,:/4 ::,-1
:t -6:90 l:F'" T•- " R " THEN GOSUB 2030
1. 7'00 IF T""- " M " THEN GOSUEI �030 • DRAW " C4 "
-01< , i::;osue 20r0
1 7' 1 0 :tF T ,.. ,.. ., J " THEN GQc:;I_IFI 2?.00
1. 7'21;?1 T F T•,... " E' " THEN GOSUB 3000
1. 7'.30 IF T " S " THE'N GOSI IFI ,c::00Pll · SCREEN 1. "'
1 7'40 GOTO 1 ��0

This module is designed to allow the user to move a flashing cursor around
the grid printed by the last module, inking in or erasing squares at will.
Having satisfactorily designed a character, a variety of other program
functions can be called up by the use of single-key codes. The
cursor-moving techniques employed will be familiar from previous
programs in this book.

Commentary
Lines 1550-1610: A variation of our standard flashing cursor routine. The
cursor is first drawn and then redrawn to the background colour of the
square it occupies. The whole process cries out for the use of GET and PUT
but unfortunately the smallest rectangle which can be PUT back onto the
screen in this PMODE is twice as long horizontally as one of our grid
elements.

Line 1620 : Having lef1 the flashing cursor rou1ine al the touch of a key, this
line checks that the element which has just been redrawn to the background
colour does not have to be inked in according to the information stored in
the array A.

Lines 1630- 1660: These lines, as will be recognised from previous
programs, move the cursor around the screen. In this case the cursor moves
in four pixel steps, anywhere within the limits of the grid. As usual, logical
conditions are used to control the movement and the required input is one
or other of the arrowed keys on the keyboard.

108

Chapter 5 High resolution text

Line 1670 : The O key is used to erase any inked-in element over which the
cursor is currently flashing. This is done by simply redrawing it in the
background colour. The relevant element in the array A must also be reset
to zero, otherwise the square will be inked in again every time Module 3 is
called up.

Line 1680: Pressing I inks in the square and sets the corresponding element
in the array A.

Line 1690: Input of R rotates the whole grid 90 degrees anti-clockwise
when the next module has been entered.

Line 1700 : Input of M will later allow the design to be moved around in the
grid.

Line 1710 : Input of I transforms the design into its mirror-image.

Line 17 20 : Input of E extracts the string necessary to DRAW the character
which has been created.

Line 1730 : Input of S results in the string created being saved to tape. Note
that because this will involve instructions being printed using the text
screen, the SCREEN command must be used on return to retrieve the high
resolution display.

Testing Module 5.1 .4
At this point you should be able to move the flashing cursor around the
grid, inking in or erasing squares at will. None of the other functions are yet
available and their use will result in an error report undefined line.

MODULE 5 . 1 .5

2000 REM************************
:20 1 0 REM ARRAY MANXPULATIONS
2020 REM************************
:2030 FOR x -0 TO 3 1 • FOR J-0 TO 3 1 • LET ec J
.· 31- X ::o-R< :I • ._, ::, • NEXT .J. I
:2040 FOR r -0 TO 31 • FOR J-0 TO 3 1 • LET Ae :r
. J ::o-e< :I . J ::O • LET e< :r . J ::0-0 , NEXT J . T
:20!!50 GOSUe 2!!500 • RETURN
:2060 REM************************
207'0 DRRW " C 3 > BM1�0 .• 4 0 .• U 1 2 ., F ,S _, El!S ., D 1 2" • F'O
R I-1 T O 1 00 • NEXT
2080 LET MX-0 • LET MY-0 • LET x , -0 , LET x2-0
• LET Y t -0 • LET Y2-0
2i:?J90 LET T 1 ,.,_ :I N EY,_ • X F T 1 ,__"" THEN GOTO
2090
:2' 1 00 I F' T 1 S-'' 1 " THEN LET MY-Y*- 1 • LET M><­
X*- 1 • LET x 1 -x LET X2- 1 24• LET v 1 -Y • LET Y2
-124 • OP.Al•J •• eM 1 �0 . 6 4 .• R� -' BL:'.=I .• U 1 2 .• G1"
2 1 1 0 I F' T 1 $-"2" THEN LET MY-Y*-1 • LET MX-
124-X > LET v 1 -Y• LET Y2- 1 �4 · LET x 1 -0 • LET X
2-x • DRAW ''BM 1 62 . 60 > L12 • U� , R 1 ? , u6 , L 1 2 ''
:2120 IF' T 1 •-"3" THEN LET MY-124-Y • LET MX
-x•- 1- • LET x1-X• LET x2- 1 24 • LET v 1 -0 • LET Y
2-Y • DRAW ''BM 1 �0 . 60 • R 1 2 J U6 • LA • R8 > U6 , L J 2''
2180 IF T 1 --"4" THEN LET MY- 1 24-V • LET MX
- 1 24-� • LET X 1 -0 • LET X2-X • LET Y 1 -0 • LET Y2
-�,. • C--RF=ll·I " BM 1 62 . 6e , L6 , r 13 , 06 -' '-'� , '· 6 , U 1 2 "

109

The Working Dragon

2140 IF T] •' '' l '' OR T t • > "' 4 '' THEN FOR I-2�
"TO ,S:� , DRAt,J " C 4 J EtM1. �0 " -+-STR•<' T '.:>-+ " , Rl 2 " , N

EXT Y RETUJ;>N
2 1 �0 LET X1 -Y.] /4 • LE T X2-X2/4 • LET Y1-Y1 /4
• LE T Y2-Y2/4 • LET MX-MX/4 • LE T MY-MY/4

2 1 60 FOR r - v] TO Y2 • FOR J-x , TO X2 • LET B
r t +MY, J-+-MX >-AC I � J > • NEXT J, (
2 1 70 FOR I�0 TO �1 · FOR J-0 TO 3 1
. J '-EtC I , J > LET ec r . J >-0 • NEXT J . Y

2 1 80 GOSUB 2�00 • RETURN
2 1 �0 REM�*� .. ********************
2200 FOR r -0 TO 31 • FnR J-e TO 3 1 • LE T �C l

. J �-A' I , 3 1 - J ' • N EXT J , I
2 2 1 0 FOR T -0 TO � 1 • FOR J-0 TO 3 1 • LET
. _, ,-e-r T . . _ 1 :: , LET BC t . . _ 1 �-0 • NEXT ._1 . T

2220 GOSUEt 2�0� RETURN

This module performs three of the functions called from the previous
module, namely rotation, inversion and movement of the design within the
grid. All the manipulations are performed by employing a second array, B,
to which is transferred the data from the array A, suitably modified. The
array B is then copied back into A.

Commentary

Lines 2030-2050: Examination of the subscripts for 1he arrays A and 8 in
the first line will reveal that those three lines accomplish the rotation of the
data stored in the array A by 90 degrees, that is to say that element 0,0 is
moved to position 31,0 and so on. Having redefined the array A, Module 3
is recalled to draw the modified grid.

Lines 2060-2180: This subsection accomplishes the movement of the
design within the grid. In order to understand this function it is first of all
necessary to visualise the corners of the grid numbered in the following
manner:

4
On calling up this section by the use of the M key in the previous module,

the user is asked to specify a corner. If corner4 is specified, then a rectangle
is defined with two opposite corners consisting of grid corner I (the corner
opposite to 4) and the current position of the cursor. This rectangle is then
moved so that the corner defined by the cursor is relocated in grid corner 4.
This may sound complex but a little experimentation will show that it is in
fact a nea1 and simple means of moving the contents of the grid around. It
is important to remember that if the design is to be moved down two lines,
1he bottom two lines of the design will be lost and similarly for moves in
other directions.

Lines 2070: This line draws a large M next to the grid to show that the move
function has been called - it seemed like a good idea at the time. The
empty loop in this line serves the important function of separating the
input named T$ in the previous module and one called TI$ which is about
to be called for. Without this delaying loop there is a danger that if the
user's finger lingers on the M key when calling up this function, the

1 10

INKEY$ function at line 2 09 0 will define TI$ as M too. This delay is
necessary whenever using a succession of INKEY$ inputs.

Line 2 08 0: MX and MY are the variables which will be used to record the
distance the defined rectangle must be moved. Xl ,Yl ,X2 and Y 2 will
record the opposite corners of the defined rectangle.

Lines 2 100-2 130: These variables are set according 10 the corner specified
as 1he destination of the move and the current position of the cursor. Again
for no particular reason, the number of the corner chosen as a destination
is drawn next to the grid.

Line 2 140: If an erroneous input is made when the program is expecting a
corner to be specified, the M is erased and control is returned to Module 4.

Lines 2 15 0-217 0: Having established the size of the rectangle to be moved
and the amount of movement necessary, these values are divided by four so
that they can be applied to the array A and the transformation
accomplished in transferring the contents to the array B.

Testing Module 5.1.5

The three functions specified in the commentary should now be available.

MODULE 5.1.6
3000 REM****�*******************
:'.:10 1 0 REM EXTRACT STRINC
::3020 REM************************
3030 FOR 1 -0 TO 31 • FOR J-0 TO 3 1 • LET
,J >-A< I,J >• NEXT J , I
::3040 LET DI• - • • HUELRGDF " • LET e:•- •• "
::30�0 LET x-0 · LET v-0• LET D 1 -0• LET 02-0 , L
ET DIR.,.0
::0060 FOR 1 ,...0 TO 31 • FOR -•-0 TO 3 1 ' IF B< 1: ,
J >-0 THEN GOTO 32�0
'307"0 LET e:•-E•+"BM " • IF --•-X >0 THEN LET E•
-E!9-+-"+" ELSE LET E•-E• -+- " - "
::3080 LET E•-e:•+M I D•< STR•< ABS<'. -•-X > > , 2 >+ " ,

::3090 IF 1 -V >0 THEN LET e:•-e:• ELSE LE
T e:•-E•+ " - "
3 1. 0 0 LET e:•-e:•-+-M ID•< STR•< ABS< I - Y > > , 2 > -+- " •
R 0 J "
� 1 1. 0 LET x-J • LET v-I
::0 1. 20 LET B< Y , X >-0
3 1 30 IF v-01�-0 AND Y+� 1. < -3 1 AND X+D2>-e

RND X+D2< - 3 1. THEN IF BC. V+D 1 ,X-+-D2 >< >0 TH
EN GOTO 3 1. 90
3 1. 40 FOR K-- 1. TO 1 • FOR L - - 1 TO 1.
� 1. �0 IF X + L > 3 t OR x-L < 0 OR Y+V >3 1 OR Y+K
< 0 THEN GOTO 3 1 7"0
3 1 60 IF B<'. Y+K . X-+-L>< >0 THEN LET D 1 -K• LET
D2-L• GOTO :'.:1 1 90
3 1 7"0 NEXT L , K • IF DIR< >0 THEN LET E•-e:•+M
1 o•c 0 1 • , D T R, l. >+MID•< STR• < NN + 1 > , 2 >+ '' • ''
:'.:1 1 80 LET DIR�0• LET D 1 -0 • L E T D�-0• LET NN-
0 • GOTO 32!50
3 1 90 LET T 1. -3*C D 1 + 1 >+D2+2 • Y F T 1 �4 THEN L
ET T t -T t - 1
3200 IF T t -DIR THEN LET NN-NN+1
3 2 1. 0 IF T l. < >DIR AND DIR< >0 THEN LET e:•-E
•+M I D•...- D :t •, DIR, 1 >+MID•< STR•< NN+1 >, :2 >+" 1 "
• LET NN-0
3220 Le'.T D Y R-T .1.
3280 LET x-�+D2 • LET v-v+D .1.
3240 o:;OTO 3 1 2:0
3:2�0 NE>o:T _1, I
3260 t� NN� ' 0 AND DIR< >0 THEN LET E•-E•+

1 1 1

M T D�� D T $ � D T F::> - 1 �-M r o•C STR•C NN- 1 > � 2 >

9'2?'0 ORAl·J " se , C:'.!'I J BM 1 �0 . . 6 0 ·' •• -E­

::3280 YF :t NKEV•-•• •• THEN GOTO :31280

9'290 !="OR r -0 TO 6 3 • DRAlJ •• C:2: , Fl!M 1 �0 .• " - "'?:Tt=:>•

0::: ,s:0 - r >-·· ·' R64 " t-lE�T 'I

3300 LET �-- 0 LET Y-0 , DRAl-.J " S 4 " , RETURN

Having established the functions necessary to define and manipulate a
character on the grid, we come to the heart of the program, the module
which takes the design which the user has created and transforms it into a
string which, when ORA Wn, will reproduce the desired character or
design.

Commentary
Line 3030: Since elements in the design will be erased from the array as they
are incorporated into the string, the process is actually carried out on a
copy of the main array.

Line 3040: The letters contained in DI$ are the eight directions which can
be handled by the ORA W command. E$ will contain the string defining the
design or character.

Line 3050: X and Y are used to register co·ordinates on the grid. DI and D2
are used to record 1he vertical and horizontal elements of the direction in
which a line is currently being DRAWn.

Lines 3060 and 3250: The loop defined by these two lines scans through the
grid, ignoring empty squares.

Lines 3070-3 1 20: For reasons that will be seen later, the fact that program
execution has arrived at this point shows that the square currently defined
by I and J is inked in but that it does not follow on in a continuous line from
any part of the design previously recorded in E$. The location of the square
is therefore recorded in the form of a B(lank) M(ove) within the string. The
first square to be recorded in this fashion will always be the top left hand
square in the design and its position will be defined in relation to the top left
hand corner. Other squares to be recorded in the BM format will be defined
in relation to wherever ORA Wing last left off. The drawing position is
updated to the current square and the square is erased so that it cannot
figure 1wice in the design.

Line 3 1 30: If the element at Y + DI ,X + D2 is not zero, then since DI and
D2 contain the direction in which a line is currently being drawn, ihe loop
examining surrounding squares is jumped around.

Lines 3 140-3170: If a current direction cannot be continued, this loop
examines surrounding squares to see if there is any direction in which
DRAWing may continue. If no such continuation is found then to E$ is
added the direction and length of the line which has been traced in the
design.

1 1 2

Lines 3 19 0- 3 2 00: If it is possible to draw from the current square, the
direction is checked to see if it is the direction of a line currently being
drawn, if so the variable NN is incremented. If it is a new direction, the
direction and length of the previously traced line are added to ES. The
value attached to any particular direction is calculated by the formula at
line 3 19 0 and this value corresponds to the position of the relevant letter in
DI$ (defined at line 3 040). It may be worth noting in passing that this
formula can come in useful in a variety of circumstances where a direction
on a rectangular grid requires to be recorded. The values which the line will
produce for the eight possible directions are as follows:

I
4 5
6 8

Compare this with the letters specified in DI$ and you will see why they are
arranged as they are. The variables D 1 and D 2 are vertical and horizontal
elements of the direction and range between -I and + I.

Line 3 2 60: This line simply ensures that any ORA Wing left unfinished at
the end of the loop is completed.

Line 3 270: The design is now ORA Wn next to the grid, using the new ES
which has been created. ORA Wing it at scale 8 ensures that its proportions,
though not its size, are the same as the design created on the grid.

Lines 3 28 0-33 00: The design is displayed until a key is pressed, then
control is returned to Module 4. Note that the scale for ORA Wing must be
returned to the normal 4 before a RETURN is made, otherwise subsequent
use of the ORA W command will produce oversize results.

Testing Module 5.1 .6

Having defined a design on the grid, you should now be able to call up this
module by pressing key E and, after a lengthy pause, see it displayed at t
scale. Stopping the program will allow you to examine the ES which the
module has created. Note that no check is made that your design is not too
complex to be drawn by a string of up to 255 characters, so that too full a
grid might result in an error, though this is unlikely to happen.

MODULE 5. 1.7

6000 REM************************
€,0 1 0 PEM SAVE CHARACTER TO TAPE
6020 REM***�********************
6030 MOTOR ON AUO :CO ON• CLS • I NPIJT ••POS I T I
ON TAPE THEN PRESS -�t�� < MOTOR :CS ON > •
.. ,, ,;t":l'I
15040 MOTOR OFF='"• :C NPUT "START RECORD I NG T H
EN ff -n-t--.- · •• , Q s
60�0 MOTOR ON • F='"OR :C - 1 TO 1 0000 • NEXT
6eto5:0 OPEN '' 0 " . £'-1. .. • • cHAR"
�070 P� T NT £- 1 � E•
60€1'0 CLOS E £ - t
609'0 RETUP ... 1

1 13

The function of this module is to allow the design which the user has
created to be saved on tape in the form of a string. You will note that the
module is more simple than many of the data file modules of earlier
programs, this is because its sole purpose is to save a single string.

Testing Module 5.1. 7
You should now be able to save E$ on tape. This can be verified by calling
up this module, then stopping the program and clearing the variables.
Insert at 8888 a single line instruction to open an input file by the name of
CHAR and input E$, not forgetting to close the file. You may then print
out E$ in direct mode, or ORA W it to check that it has been satisfactorily
recorded and reclaimed. If this is successful then the program is complete
and you are ready to proceed to the second half of the high resolution text
section.

CHARACTERS: Summary of single key functions
With cursor flashing:
0 erases square on grid where cursor is situated.
I inks in square on grid where cursor is situated.
R rotates design within grid by 90 degrees anti-clockwise.
M calls subroutine which moves design within grid.
I transforms design within grid into its mirror image.
E creates string which will duplicate design if DRA Wn.
S saves design on tape.
With large M drawn to the right of the grid:
1 ,2,3 or 4 specifies the corner towards which the design is to be moved.

Summary
This program is an odd one in that, as it stands, it is almost completely
useless. That is to say, all it accomplishes is to store strings defining small
scale designs or characters onto tape, hardly a stunning feat. In
combination with other programs, however, which will pick up the
characters created and compile them into usable character sets, and
modules which will allow you to use such character sets easily in high
resolution PMODEs, the program becomes an indispensable tool which
enables the Dragon to exceed its normal capabilities.

Going Further
I} A character creator is hardly much use unless you are prepared to sit
down and define some characters. Though this may seen an incredibly
difficult and boring task at first glance, a moment's reflection will suffice
to realise that a complete set of characters, already defined in pixels, is laid
out before you in the listings given in this book. Alternative styles of

1 14

Chapter 5 High resolution text

lettering can be found in the program listings in any computer magazine.
With such examples to work from, you really should have no difficulty in
building up a collection of worthwhile characters.
2) The program as given does not necessarily always make the best use of
the 255 characters or string space available for E$. This is because a blank
move always uses the BM notation, which requires at least seven characters
(BM + 2, -2) and possibly nine. An interesting challenge would be to insert
a routine to test whether such a blank move could be covered by one or the
single-letter DRAW instructions. The blank move given above for instance
could just as easily have been defined by BE2, which would result in a
considerable saving.

5.2 DICTIONARY

Having created characters it now only remains for them to be combined in
such a way as to be useful for subsequent programs. The program which
follows is designed to accomplish this by holding in memory up to I 0 0
characters a t one time, with the possibility of more being picked up from
tape in batches of one hundred. The characters so stored can then be
combined into collections such as ABCDEFGHI ... etc to provide
material for high resolution programs which require text. In later
programs we shall examine practical modules for using such character sets
without constantly having to specify DRAW commands in the program.

MODULE 5. 2 .1
1 000 REM************************

! :�:,-·:�-=�=�*******************
1 030 CLS • PR J: NT (2 42 � " d 1 o:t 1 o-n.-, ...,,.. ••
1 040 pi:=,; X NT , pi:=,; J: NT "FIJNCT I ONS AVA J: LABLE • "
1 0�0 PRINT " 1 >DISPLAY DICT I ONARY'"
1 0"50 PR J: NT " 2 >DI SPLAY CHARACTER SET ''
1 0?'0 PRINT " 3 >LOFID,......SAVE DATA"
1 0190 PRINT " 4 >INIT J: A LISE'"
1 09' 0 PRINT " � >STOP"
1 1 00 PRINT • INPUT " WHICH DO YOU REQUIRE • "
� Z • CLS
1 1 1 0 IF Z�4 THEN ON Z GOSUB 2000 � 2�00 � 60
00 • C:OTO 1 000
1 1 20 ON Z-3 GOTO 1 �00 � 1 1 4 0
:1. 1 30 GOTO 1 000
1 1 40 CLS • PRINT l'.J!' ?'*32+ 1 0 � '' d 1 o:t :l o-n«...,,.. " , PR
J: N T • PRINT " PROGRAM TERM J: NATED"
1 1 �0 STOP

A standard menu module.

MODULE 5.2.2
:t.�00 REM************************
1 � 1 0 REM J: N J: TIALISE
1 �20 REM************************
1 �30 PCLEAR 4 • CLEAR 1 �000
1 �40 D J: M DI•< 1 28 > • DIM CHAR• < 40 >
1 ��0 LET CI-0 • LET o x -0
:1. "!5'50 COTO 1 000

This module sets aside sufficient memory for the necessary PM ODE and
reserves the rest or the available memory for strings as well as setting up the
necessary variables.

1 1 5

The Working Dragon

Commentary
Line 1 540: The main dictionary of characters will be held in the string array
DI$. The number of elements which this array will be capable of holding
will depend on the complexity of the characters and, therefore, the length
of the strings required to ORA W them. The character set currently being
compiled will be held in the string array CHAR$.

Line 1550: CI and DI record the number of characters stored in the
character set and the dictionary.

MODULE 5.2.3

REM************************
20 1 0 REM DISPLAY DICTIONARY
2020 REM************************
2030 LET S-0
2040 PMODE 4 , 1. • PCLS • SCREEN 1 , 0
20�0 FOR I-s TO S+31
2060 DRAL•J " !3M ., +STR•< 32*< < :t -S >-8* :t NT<< I -S
z;� > >>+ '" , ''+STR•<4�*INT< < I-S ::>/8>>+'' , ''+D I *

20?'0 NEXT T
2000 LET S 1 -S-32 * X NT< �/32 >
:20:51'0 LET T • ,.. :t NKEY• l:F T•< > "" THEN GOTO 2
1 �0
2 i 00 FO� X - 1 TO 2
2 � 1. 0 DRAW ·· c ·· -STR•< I > - '' a l3M ''-STR•< 32*<S1. ­
e* :t NT< S 1-e ::, ::,+e >-" . " +STR•< 4�* t NT< S 1. /9 >-40
>- " ., E3 ; F3 "

21.20 FOR J - 1 T O 2� • NEXT J
2 1. :30 NEXT I
21. 40 GOTO 2090
2 1.�0 LET s 1 -s 1 -< T•-cHR-< 9>>•< T•-CHR•<e> >

L E T s 1 -s 1 -<s 1 -:: 0> - < S 1. >31 >
21. 60 IF T•-"O" THEN FOR I-S+S:1. TO DI-1 • L
ET DI�< I >�DI•< I + 1 > • NEXT 't • LE T D l: -D l: - 1. GO
TO 2040
21. ?'0 IF T•- •• c •• THEN IF CI<-40 THEN LET C
HAR•< c 1: >-o t •<s-s 1. ::, , LE T c t - c x -1.
21. 80 l: F T•-c1-1R•<1. 0 ::, THEN LET s-S-32* < S< t.
28 :,- , GOTO 2040
2 1 90 l:F T•-cHR9<94> THEN LET s-s+32*<S >3
1 > , GOTO 2040
2200 J: F T•-- "0" THEN
22 1 0 GOTO 2090

The purpose of this module is to display the dictionary of characters page
by page and to move a cursor around the page allowing the user to specify
characters for a number of simple operations.

Commentary
Line 2060: The fairly involved figures which are to be included in the string
to be ORA Wn simply specify that each character to be drawn will be placed
32 pixels to the right of the last, or at the start of the screen and 45 pixels
down if the end of a line has been reached. This allows for the full 32*32
grid on which the character was designed plus room for a moving cursor.

Line 2080: While the variable S records the absolute position of the
character currently pointed to within the dictionary, S 1 is used to indicate
the position of the cursor on the screen.

116

Chapter 5 High resolution text

Line 2100-2130: A flashing cursor routine which uses the value of the loop
variable I to set the colour with which the cursor is ORA Wn and thus needs
only the one line to DRAW and reDRAW to invisibility.

Line 2 150: The cursor move line, based on the left and right arrowed keys.

Line 2160 : Input of D will result in the deletion of the character to which
the cursor is pointing from the dictionary.

Line 2 170: Input of C adds the character to which the cursor is pointing to
the current character set.

Lines 2 180- 2 190: The up and down arrows are used to move to the
previous or following page of the dictionary.

Line 2200: Input of Q returns program execution to the menu.

Testing Module 5.2.3

Since no characters have yet been loaded from tape, it is difficult to test this
module but since there are almost bound to be errors in entering it we shall
adopt the temporary expedient of entering some simple specimen
characters with the following line :
8888 LET D$ = "BM + I, + 0;R0;" :FOR H = 0 TO 7 :LET E$= "" :FOR
1 = 0 TO 13:LET E$ = E$ + D$:LET D1$(H' l 4+ I) = E$:NEXT ! :NEXT
H :LET DI= I 10

This line, provided that the program has been initialised, can be called in
direct mode or even called as a subroutine from the initialisation module
and will load the dictionary with 112 characters which are actually sets of
14 lines of increasing length traversing the 3 2 * 3 2 pixel space diagonally
from the top left corner.

Having run line 888 8 , calling up this module should display the first page
of the dictionary and allow the full range of functions specified in the
commentary.

MODULE 5. 2.4
2�00 REM************************
2�10 REM o r SPLAY CHARACTER SET
2�20 REM************************
2��0 PMODE 4 � 1 • PCLS • SCREEN 1 � 0
2�40 FOR r -0 TO CI
2��0 DRAl•I "E'IM "+STR• < :32*< I -8* I NT< I /8 ::> ::> ::>+"
, •• +ST �ffl<32�INTO:: I/9 ::> >+'' , ''+CHAR•<I ::>

2!560 NEXT I
:2!570 LET T•-I NKEY• • IF T,.,_ ••" THEN GOTO 2�
7'0
:2!580 I F T• - · · o ·· THEN LET c x -e
2!590 RETU�N

Having begun to build up a character set from the main dictionary, this
module allows the user to display the currenl state of the character set.

I 17

The Working Dragon

Commentary
Line 258 0: Input of D while the character set is being displayed will result in
the character set being deleted. Note that this is achieved simply by setting
Cl to zero. There is no need to physically wipe out the character set.
Pressing any key other than D will return to the menu.

Testing Module 5.2.4

You should now be able to create a character set from the main dictionary
and display that character set.

MODULE 5. 2.5

6000 REM***********************�
6010 REM DATA F t: LES
6020 REM************************
6030 MOTOR ON • AUD t: 0 ON • CLS • t: NPIJT "POS t: T I
O N TAPE THEN PRESS �nt•� (MOTOR I S ON > •
.. , Q ...
6040 MOTOR OFF , I NPUT "PLACE RECORDER t: NT
0 CORRECT MODETHEN PRESS •nt•�" J Q•
60�0 PP:INT • PP: T NT ",:-UNCT I ONS A V A I LABLE • " •
"1 >SRIVE CHARACTER SET" , "2 >LOAD NEW CHARA
CTER'" • "'3>SAVE DICT T ONARV'' • '' 4 >LOAD D I CT I O
NARY" I NPUT " I.JH I CH D C YOU REQU 't R E • " -' Q • ON

Q GOTO 6070,S1�0,6210 , 6280
6060 RETI_IRN
6070 MOTOR ON • FOR I -1 TO 10000 • NEXT
6080 OPEN "0" • £-1 . "CHARSET"
6090 P l=i': I N T £.-1 , • C t:
6100 FOR I-0 T O C I -1
61 1 0 PR '[NT :E: - 1 .• CHAR• (t: >
6120 NEXT I
6130 CLOSE £.- t
'5140 RETU"-":N
61�0 1: F D I -100 THEN RETURN
61,S,0 OPEN " I " , £-1 • "CHA"-':"
6170 I NPUT £.-1 . 0•
6180 CLOSE£-1
6190 LET D I • (D I >-D9 • LET D I -D l: +1
6200 RETU"-":N
6210 MOTOR ON · FOR 1: - 1 TO 10000 • NEXT I • OP
EN ·· o ·· . e. - 1 . ·• 0 1: cT "'
6220 PR I NT £.-1 . 0 I
6230 FOR r -0 TO D J: -1
6240 PR I NT £- 1 . 0 I • < r >
€.2�0 NEXT I
6260 CLOSE £-1
6270 RETURN
62E'0 OPEN " I " , :£-1 . " D I CT"
6290 I N PUT £-1,D I
6300 FOR 1: -0 TO D I -�
6310 I NPUT e- t � O J: �< 1: >
,S:320 NEXT r
'5330 CLOSE :E:-1
'5340 GOTO 1e'l00
11$3�0 LET D'911-"E'IM-1 .• -0 ., R 0 J " , FOR 1-1-0 TO 2 • L
e:.T E!l!I-"" , ,=-oR r -0 TO 13, LET e:•-e:••o•, LET
DJ:-< H*14+ I >-E� · NE�T I • NEXT H • LET D I -40
6360 RETUR:N

This is our standard data file handling module expanded to take account of
the fact that we now wish to load or save four different sets of data -
individual characters from tape, character sets to tape, the dictionary from
tape and the dictionary to tape.

1 18

Commentary

Lines 6070-6140: This section saves the current character set to tape,
together with the variable Cl, which indicates how many characters it
contains.

Lines 61 50-6200: This section loads a single character from tape and
stores it in the dictionary.

Lines 6210-6270: This section stores the current dictionary onto tape.

Lines 6280-6340: This section loads a dictionary from 1ape. Note that a
new dic1ionary can be loaded during the creation of a character set, thus
allowing the character set to draw upon a wider range of characters than
can be contained within one dictionary.

Testing Module 5.2.5

You should now be able to pick up characters created by the previous
program, compile them into a dictionary or dictionaries and, using these
dictionaries compile your own character sets and save them on tape. If
these functions are all available, the program is correctly entered and ready
for use.

DICTIONARY: Summary of single-key functions
With flashing cursor:
Left and right arrows move cursor.
Up and down arrows move display to new page of dictionary.
D deletes character above cursor from dictionary.
C adds character above cursor to current character set.
Q returns control to menu.

No flashing cursor (character set display):
D deletes current character set.
Any other key returns to menu.

Summary

This is an uncomplicated program for the simple reason that it is designed
to leave the maximum amount of space for the strings containing the actuaJ
characters themselves. Once entered you are ready to embark on the task of
creating and compiling sets of characters for use in high resolution mode.
As previously mentioned, later programs will take you further by showing
some practical ways to use such character sets without having to specify the
ORA Wing of each character separately.

I 19

Going further
1) As with the character creator itself, this program will only come into its
own when you get around to compiling a dictionary or two.
2) Text is not the only area where the programmer might benefit from
having a set of characters available in high resolution modes. What about
developing sets of symbols for electronic diagrams, for instance.
Remember that, using the DRAW command such symbols can be rotated,
so that a single symbol is all that will be necessary for each component, no
matter what its orientation may be. You could, perhaps, add the ability to
DRAW such characters to a program such as Designer thus allowing
symbols and text to be made an integral part of the designs created using
that program.

120

CHAPTER 6

Handy programs

In this chapter we turn our attention to a collection of programs under the
general heading of 'utilities', designed to display a few of the wide ranging
uses to which the Dragon can be put around the home.

In most of these programs we shall be employing techniques which we
have already come across and, apart from such explanation as is necessary
to understand the functioning of the program, comments will be
accordingly brief.

6.1 NAME AND NUMBER

Once again a general purpose tool which enables a dictionary to be built up
of i tems together with 1he units in which they are usually measured and an
associated quantity. Current working lists can be constructed out of the
dictionary items. At first sight this might not be a very inspiring prospect,
but on reflection you may find that there are already a number of areas
where such a program could come in useful. One might be the field of
calory control, where the Dragon is capable of storing a dictionary of up to
500 foods, together with the units in which they are usually measured and
the calories per unit. A day's calorific intake can be easily calculated by
using the current list facility to construct a list of the day's or the week's
food and automatically calculate the number of calories involved. The
program is also useful in calculating total prices for orders where the total
stock of items does not exceed 500 types.

MODULE 6. l . l

6000 REM************************
60 1 0 REM DATA FILES
6020 REM************************
60:30 AUD I O ON , r-10TOR ON• PR l NT • INPUT " F'"OS I
T I ON TAPE THEN PRESS •nt-r <MOTOR IS ON
�' " � Cl• • MOTOR OFF

6040 PRINT • INPUT 0 ' PLACE RECORC•ER I N CORR
ECT MODE THEN PRESS 9nt*�·" J QS
,s0=,0 PR I NT • PR l NT •• F"UNCT I ONS AVA :t LABLE • " ,
" .1 >SAVE DATA'' • , " ::2: >LOAD DATA"' , INPUT "WH I C
H DO Y O U REQU :t RE • •• ; Q • ON G! GOTO ,S:070,6 1 40
6060 RETURt-�
6070 MOTOR ON• FOR I- 1 TO 1 0000 • NEXT I
6080 OPEN " 0" . £- 1 , "NNUMBER"
6090 PRINT £- 1 . NAME$. QUANTITYS
6 1 00 PR I N T £ - 1 , CURR • FOR I -0 TO CURR- 1 PR
:t NT £- 1 . T$< l , 0 :>, T•< I , 1 >, T.-:'. :r; >• NEXT
6 1 1 0 PRINT £- 1 , I TEMS • FOR I -0 TO l TEMS-1 •
PRINT £- 1 , ASC I,0 :>,AS< l , 1 >,CC I > • NEXT
6 1 20 CLOSE£- 1

121

The Working Dragon

6 1 30 RETURN
6 1 40 CLEAR 1 0000 LET FLAG-1 GOTO 1 e40
6 1 �0 OPEN" 1 " . £- 1 , " NNUMSER ''
6 160 l NPUT £ - 1 NAME• , Q UA N T J: TYS
6 1 70 l NPUT £- 1 , CURR • FOR 1 -0 TO CURR - 1
PUT £ - 1 , T$< l • 0 > , T$< 1 , 1 "'.> , T < l > t-..lE>-:T
6 1 80 l NPUT £ - 1 , J: TEMS FOR t -0 TO l TEMS - 1
INPUT £- 1 _. A•< 1 _, 0 > , AS<'. l , 1 ::, _, C <'. l ::, NEXT
6 1 90 CLOSE£- 1
6200 GOTO 1000

A standard data-file module.

MODULE 6. 1.2
7000 REM************************
70 1 0 REM FORMAT T I TLES
7020 REM************************
7030 LET P2- 1 4-INT< LEN< F• >-2 >
7040 P R J: NT @ 32*P 1 -P2 , S T R 1 NG$<'. LEN< F$:>+2 .
1 �0 >
70�0 P R J: NT � 32*< P 1 - 1 >-P2,CHRs< 1 e0 ;:,+F$+C
HR!!I.< 1 �0 :.:,
7060 P R J: NT � 32*<P 1 -2 >-P 2 , STR l NG$<'. L Et < F$
��-2 , 1 �0 >

7070 RETURN

A standard title-formatting module.

MODULE 6. 1. 3
1000 REM************************
1 0 1 0 REM MENU
1 020 REM************************
1030 CLS LET F!ll- '' NAME AND t-�UMBER " LET P l
-e • GOSUB 7'000
1040 PF<": I NT , PR I NT "COMMANDS AVA I: LABLE ••
1 0�0 P R I NT " 1. >D I: SPLAY CURRENT L I: ST "
1 060 PRINT 2 > I: NPUT T O CURRENT LIST "
1 07'0 PRINT " 3 >STRRT FRESH L I S T "
1 080 P R I NT 4 >DELETE FROM CURRENT LIS
T '"

1 090 P R I: NT �)EXTEND DICT I ONAR"y' "
1 1 00 P R I: N T 6 >D I: SPLA'Y D I: CT I: ONARY"
1 1 1 0 P R I: NT 7")DATA F J: LES ••
1 1 20 P R I: NT •• 8)IN I: TIALISE ''
1 1 30 P R I NT " S'>STO P "
1 1 40 I NPUT " WHICH D O YOU ":EQUIRE • " ; Z CLS
1 1 �0 ON Z GOSUB 2000 , 2�00 , 3000 , ��00 , 3�00
. �000 , 6000 , 1 �00 . 1 1 70
1 1. 60 CLS • GOTO 1 000
1 1 70 CLS • LET F•- " NAME AND NUMS:ER " • LET
--:5 • GOSUB 7000
1 1 80 LET F•- "PROGRAM NOW STOPPED " • LET F' 1
- t 0 • GOSUB 7000
1 1 90 END

A standard menu module.

MODULE 6.l.4

1�00 REM************************
1 � 1 0 REM VAR I ABLES
1 �20 REM************************
1 �30 CLEAR 1 0000 • LET FLAG-0
1 �40 D I M A•<�00 , 1) , C< �00 > , T•<�0 . 1) , T<'. �0)
1 ��0 LET CURR-0 • LET X TEMS-2
1�'50 LET A•< 0, 0 >- " ! " , LET A•< 1 , 0 > - " ZZZ2"ZZ
ZZZZZZ "
1 �70 X F FLAG-1 THEN GOTO 6 1 �0
1 �80 PR 1 NT • I NPl..lT • • NAME F='"OR I TEMS " , NAME•
1 �90 P R J: NT • X NPUT " NAME FOR ASSOCIATED U
N I TS " ; QUANT I:TY•
1600 GOTO 1 000

122

The purpose of this module, apart from initialising the variables to be
used, is to allow the user to specify the type of item the program is to be
applied to (e.g. FOOD) and a general name for the units of measurement
(e.g. weight unit). The actual unit of measurement will be specified
alongside the item as it is entered and can differ from item to item. Thus, in
the case of food, some items may be measured in ounces, some in pints etc.
You may like to note in passing that in line 1 550 a variable is declared with a
value of zero. This does not need to be done since the first time the Dragon
encounters the variable name it will assume the value to be zero anyway.
The question is, however, is a program easier to understand if all the major
variables are listed in the initialisation module or is this a waste of space?

MODULE 6 . 1 . 5

3500 REM************************
9 5 1 0 REM EXTEND DICTIONARY
3520 REM************************
3530 IF ITEMS-::500 THEN PR X NT 00 NO MORE RO
OM IN D I CTIONARY . ••, FOR x - 1 TO 5000 • NEXT •
RETURN
354-0 CLS • LET F•- " NEW ITEMS FOR DICTX ONAR
y •• • LET P 1 -0• GOSUB 7000
3550 PRINT , F>RINT NAME • , •• • " J • • ,: NAME OR � ZZ z� TO Q U IT > , " , INPUT F•, IF F•- " ZZZ" THEN
RETURN
3':560 PR I NT , PRINT QUANTITY• , •• , " , INPUT G•
:3570 PRINT • PRINT " QLIANTITY PER " J G• , X NP
UT NN
9�90 PR X NT • INPUT '0 ARE THESE CORRECT
::,, " ; Cl$ • IF G»•- " N " THEN GOTO 3540

3590 CLS• GOSUB 4000• GOSUB 4::500
3600 LET X TEMS- I TEMS- 1 • GOTO 3�40

This module accepts inputs to the main dictionary of foods and calls up
later modules to actually insert the items. In the case of the food example,
the prompts for this module would be "FOOD:" , "WEIGHT UNIT:"
and QUANTITY PER (whatever is input under weight unit)".

Testing Module 6.1.5
You should now be able to input items under your specified prompts,
though they will not be stored in the main arrays.

MODULE 6 . 1 .6

4000 REM************************
40 1 0 REM B :l NAR'V0 SEARCH
4020 REM************************
4030 LET POWER-(l NT(LOG< XTEMS-1 >/LOG<2> >
,

4040 LET SEARCH-2�POWER

:��: i�
R

A�����,�� � 0��F: ���� ��T SEARCH-
SEARCH-2.-.J:
4070 XF A•< SEARC H � 0> >F• THEN LET SEARCH­
SEARCH-2.- J:
4080 J:F SEARCH< 1 THEN LET SEARCH - 1
4090 I F SEARCH > J: TEMS- 1 THEN LET SEARCH- I
TEMS- 1
4 1 00 NEXT I
4 1 1 0 IF A$(SEARC H � 0><F• THEN LET SEARCH­
SEARCH-1
4- 1 20 RETURN

12 3

A standard binary search module, less the section which actually inserts
items into the file. This is held separately because the binary search module
is used by several modules, not all of which require an item to be inserted.

MODULE 6 .1.7
4=.;00 REM************************
4� 1 0 REM INSERT ITEM
4=.;20 REM************************
4�30 FOR I-ITEMS TO INT<SEARCH :> + 1 STEP -
1 • LET A$C I J 0 >-A$C I- 1 . 0 > • LE T A•< I , 1 >-A$C I
- 1 , 1 > • LET C< :l >-C< I - 1 > • NEXT I
4=.;40 LET A• < SEARCH , 0 :>-F• • LET A$C SEARCH,1
>-G• • LET C<SEARCH > -NN

4�=.;,z, RETURN

This module actually inserts the new items into the main dictionary.

Testing Module 6./. 7
You should now be able to insert items and find them stored in the main
arrays.

MODULE 6.1.8
�000
!!50 1 0
!!5020
=.;030
�040
TEM ,
�0=.;0
!!5060
M ..

REM************************
REM USER SEARCH
REM************************
LET SEARCH - 1
i�;;'.��� �NT • PRJ:NT " ON APPEARANCE O F I

PR I NT G! 1 =.;*32 . " TOTAL t TEMS , " ; :I TEf'1S-2
PRINT G! 1 *32 , " > ' ENTER ' FOR NEXT ITE

�07'0 PRINT " >ITEM T O BE SEARCHED FOR"
�080 PRINT " >POSITIVE OR NEGATIVE NUMBER
• PRECEDED BY • £_ • TO MOVE POINTE R "

� 0 9' 0 PR I N T " > • ODD • TO DELETE ITEM"
!!5100 PRINT " > · z z z · TO QUIT FUN C T X ON"
� 1 1 0 PRINT STRING.<32 . " £ " > ,
� 1 20 PRXNT "ENTRY NO • -" J l:NTC SEARCH>
� 1 30 PRJ:NT NAME• , " , " ; A•< SEARCH, 0 >
!!5 1 40 P R X N T QUANT :l TYS ; " • " , A•c SEARCH , 1 >
=.; 1 =.;0 PRINT "QUANT J: T Y PER " ; A•<SEARCH . 1 > ,
" • " ; C< SEARCH >
=.; 1 e;0 INPUT "WHICH DO YOU REQU J: RE • " • F•
� 1 7'0 IF F•-"DDD" THEN FOR I-SEARCH TO IT
EMS-2 • LET A•< x . 0 >-A•< X + 1 , 0 > • LE T A•< x . 1>­
A•< X + 1 , 1 > • LET CC X >-C< X + 1 > • NEXT X • LET ITE
MS-ITEM S- 1 • GOTO �040
�190 XF F•-"ZZZ" THEN RETURN
=.; 1 90 J:F F$-"" THEN LET SEARCH-SERRCH+- 1 J:
F SEARCH >ITEMS-2 THEN RETURN ELSE GOTO �
040
=.;200 J:F LEFT• < F• , 1 >< >"£" THEN GOSUB 4000
• GOTO =.;040

=.;2 1 0 LET SEARCH-SEARCH+-VAL< M X D•<F• . 2 � >
�220 J: F SEARCH>ITEMS-2 THEN LET SEARCH- :r
TEMS-2
=.;230 IF SEARCH< 1 THEN LET SEARCH - 1
=.;240 GOTO =.i040

A standard user search module with the one difference that an actual
search for a specified item is carried out using the Binary Search module.

Testing Module 6./.8

You should now be able to display data entered, to page through the
dictionary, to jump backwards and forwards, to discover a named item
and to delete items at will.

124

MODULE 6 . 1 .9

2!500 REM************************
2� 1 0 REM EXTEND CURRENT LIST
2�20 REM************************
2!530 I:F CURR-�0 THEN PRINT "CURRENT LIST

FULL . "' • FOR I- 1 TO !5000 • NEXT • RETURN
2540 LET i=-•-" EXTEND CURRENT LJ:ST " • LET F1
-0 , c;;osue r000
2��0 PR I NT • PRINT NAME• > • INPUT F•
2!560 GOSUB 4000 • 1: F A•< SEARCH,0 :>< >F• THEN

FRJ:NT � 1 0*32,NAME• ; " UNKNOWN--PLEASE C
HECK . " FOR J: - 1 TO !5000 • NEXT Z • RETURN
2!57"0 PRINT • PRINT CIUANTITY. > " ' " > A*< SEARCH
, ' >
2�90 P R J: N T • J: N PUT " Q UANT J: TY • " ;. Q
:Z!5St0 PR I NT • INPUT " ARE THESE CORRECT < Y,,.,.
N > • " , Q ... • CLS • IF Q • - " N " THEN GOTO 2:!500
2�00 • LET �-< CUR R , 0>-A•< SEARCH, 0>• LET T•
.::: GURR, 1 ::,-STR•< Q :>+" "+A•< SEAR C H , 1 > • LET T<
CURR >-Cl*C< SEARCH> • LET CURR-CURR + 1
2 6 1 0 P R I. N T • l: NPUT " ANY MORE l:TEMS < Y.....-N > • "
; Cl• • CLS • J:F o•- "Y" THEN GOTO 2!500
2620 RETURN

This module inputs items for inclusion in the current list, that is a working
list of items contained in the main dictionary, which can be manipulated
without corrupting the data contained in the main dictionary. In the case of
the food example, the user would be required to supply the food type, the
program would then supply the unit of measurement and the user would
specify how many of those units were to be included.

MODULE 6. l . 10
2000 REM************************
20 1 0 REM OJ:SPLAY CURRENT LIST
2020 REM************************
2030 J:F CURR-0 THEN RETURN
2040 LET SUM-0 • FOR i: -0 TO CURR-1
;20'!50 PRJ:NT NAME • > " • " > T•< I � 0 >
201150 PRINT QUANT I TY • ; " , " > T•< J: � 1 >
;2070 P'R X NT "QUANT X T Y • " ; T< X >
2080 PR J: NT STRING•< :3 2 � " £ " > >
2090 I F J: NKEY•- "" " THEN GOTO 2090
2 1 00 LET SUM-SUM+T< J:>
2 1 1 0 NEXT X
2 1. 20 PR X NT " TOTAL QUANTJ:TY • " ; ::;:UM
21. 30 •pR I NT • J: NPUT "PRESS .,..,..,t._..- TO CONT J: NU
E " ; Q""
;2 1 40 RETURN

This module displays the current list, item by item, and totals the quantities
involved (calories in the case of the food example). The user is required to
press any key to display the next item in order to prevent the list scrolling up
the page too fast to be read.

Testing Module 6.1. JO

You should now be able to load items from the main dictionary into the
current list and to display that list.

MODULE 6. 1 . 1 1

3000 REM************************
30 1. 0 REM X NJ:TJ:ALISE CURRENT L l: ST

125

3020 REM************************
3030 FOR I-0 TO �0 • LET T•< I > 0>-"" • LET T•
< l � 1 >-"" , LET T< X >-0 , NEXT X • LET CURR-0 • RE
TURN

This module initialises the current list only.

MODULE 6 . 1 . 12

��00 REM************************
� � 1 0 REM CURRENT L X ST DELET I ONS
��20 REM************************
��30 FOR I -0 TO CURR - l • PR I NT T•< I > 0 :>
��40 PR I NT T•< I > 1 >
�'!:!i�0 XNPUT "ddd-DELETE/•r,t•.--NEXT....-z:z:z-QU
l T" � c:t• • I F c:t•-"ZZZ" THEN RETURN
:5:560 IF GI*-" •• THEN NEXT I • RETURN
��?0 FOR J-I TO CURR- 1
:5:590 LET T•< J > 0 >-T•<J- 1 > 0 >
��90 LET T• < � > l >-T• < J- 1 > 0 >
:5600 LET T<J :>-T<J- 1 :>
:56 1 0 NEXT J
:5620 LET CURR-CURR- 1
:511$30 RETURN

This module accomplishes deletions from the current list.

Testing Module 6. I . 12
You should now be able to delete items from the current list or to initialise
it.

Summary
The program is yet another good example of the power of modular
programming since most of the modules have been lifted, with very little
modification, from other programs in this book.

From this you may draw the valuable lesson that, provided you clearly
distinguish the functional units of a program, it is always methods that are
more important to your progress as a programmer than the actual number
of programs you have written. A good library of programs will stand you
in good stead until a totally new application comes along. A good
collection of methods, contained in clearly identifiable modules, will never
let you down. So don't limit yourself to methods which you need for only
present day applications. If you see an interesting way of doing things in a
magazine or book, write a simple program to use it, just for the hell of it.
Within a week or two you may well find that it is just what you are looking
for, for that new program that is giving you so much trouble.

6.2 TYPIST

I have to confess that I am inordinately fond of this program. Its presence
here proves that a program doesn't have to be long to be useful - this one
is short, neat and outstandingly good at what it does . . . and what it does is
help you to learn to touch type.

126

Chaprer 6 Handy programs

MODULE 6.2. 1

1 000 REM************************
1. 01 0 REM PR I N T KEY BOARD
1 020 REM************************

1030 CL S • PRINT O!: 33� CHR•< l 39 > J STRING•C 2
7,1. G3 > J CHR-� 1 33 >
1 040 LET AS- " 1 234!567'1390 • -b •• • PRINT CHR-('. l
42 > J CHR•t::: 1 36 > • • FOR I-1 TO 1 3 • PRINT CHR•<
1. ?'"5 '> J M T D•< A• ,]" , l >; , NE><T I , PR X NT CHR•< l 7'"5
:, ; CHR•("" l 32 > , CHR•< 1 4 l >
:t 0�0 LET Aa-,.,_GU.JERTVIJ I OPO!: " -+-CHR•< 9"5 >-+-CHR•
C 9� > · PP I N T CHR•C 1 38 > .• , FOR 1 - 1 TO 1 • P R I N
T CHR .. < 1 7'"5 > J M :t D•< A• .• I .• t > .• • NE><T :I • PRINT C
HP .. (t ?� > J CMR•C 1 32 > J CHR•< l 4 1), J
1 0-S:0 LET A•-••,_ASDFGH�IKL J •• • PRINT CHR•< 1 39
> • CHR•< 1 30 > J • FOR X - 1 TO l l • PR I NT CHR•< l 7'

� > ., MIC"!tl< ,,,_ !II - T . :t .., _, , NEXT :t • PRINT CHR•t::: 1 7'"5 >
, "<:!'-,....-- " ., CHR•t::: 1 7"!5 :'> J • • ,::: " ., CHR•C 1 7'"5 > , CHR•C 1 33 >

1 0?'i:?I LET A•-·· z:,.,:cveNM, • .,,... •. • P R :t N T " •• J CHR•<
1 38 > ., CHR'!III..- t ?'� .., • "ss" ., • FOR "t - 1 TO 1 0 • PR :t NT

CHR• C: 1 7'"5 > ; MID•< f'll• - :I , 1 > • • NEXT :I • PR :I NT CH
P•C 1 ?""5 > , "� � " , CHR•< 1. 7"!!'5 :, J CHR•< 1 29 >; CHR•< 1 3
:t >; CHR•< 1 3"5 > ;
:t 081?1 P P "t N T " " , c,-o�:•< t ::3 13 > , STRING•< 2?' , 1 7" 2 >
, CHR!9..- 1 33 >

All that this module does is to print a fairly crude-looking representation of
the keyboard at the top of the screen. You will note that the down arrow
and the right arrow are not represented properly because they are not
available in the character set.

MODULE 6.2.2

2000 REM************************
20 1 0 REM ACCEPT INPUT
2020 REM************************
2030 LET SUM-0 • LET R X GHT-0 • RESTORE
2040 READ A• • T F A•-"STOP" THEN RESTORE • R
EAD F=I•
20�0 "tF LEN < A• > > 3 1 THe:N P R X N T "STR :I N G T
00 LON G " , STOP
2060 PRINT � 0*32,A• • PRINT � 9*3 2 , STR I N G
•t::: 32� '' '' > • PR X N T � 9*32 , '' '' •
20?0 FOR T - 1 TO LEN< A• >
:2080 LET T • - r Nv.Ev• IF T,._ OR T•-CHR•c e
> THEN GOTO :2080

2090 LET SUM-SUM - 1 • SOUND 1 �0 , 1
2 1 00 X F T•-M :t D•< R• , I - 1 > THEN GOTO 2 1 20 E
LSE PR I NT T• .• CHR•< 9!5 > •
2 1 1 0 L E T T • - r NKEV• , IF T __ .. " OR TIII-CHR•< 8
> THEN GOTO 2 1 1. 0 ELSE PR X NT CHR•< 9 > J CHR•

< 0 > ., • GOTO 2090
2 1 20 LET RIGHT-R X GHT- 1 · :I F T•< > " " THEN P
R t NT T9 , ELSE PR X NT CHR•< 1 �9 > J
2 1 30 NE)(T T
2 1 40?.I PR- 1: N T I:!! 1 2*32, "I N TC R X GHT/SUM,t:: 1 00 > � "%

2 1 �0 INPIJT "MOP'E ('. V/N > • " • Q• • :IF r:a•< > "N '" T
HEN GOTO 2040

This module displays a line of text on the screen underneath the keyboard
for the user to copy.

Commentary
Lines 2040-2050: Text to be copied is entered in the form of DAT A
statements after line 3000. Text must be no more than 32 characters long
for any one unit.

Line 2060: The next line is cleared for the user's input.

127

The Working Dragon

Lines 2070-21 80: The INKEY$ function is used to obtain any character
which the user inputs. The character is displayed on the screen underneath
the line to be copied. If it corresponds to the next character to be typed in
the text to be copied, then the program moves onto the next position. If the
input is incorrect an arrow is placed next to it and the program stays with
that position until the correct character is entered. Correct keystrokes are
recorded along with the total number of keystrokes, and the percentage
success rate is displayed at the end of the line.

MODULE 6.2.3
3000 REM************************
:30 1 0 REM DATA FOR TESTS
:3020 REM************************
30:'.3"21 DATA " TH J" S J:S A DRAGON TYF" J: NG TEST"
:3040 DATA "�!UST TYPE L,JHA T YOU SEE"
:30""50 DATA "C-ON � T LOOK DOWN AT. THE KEYBOA
RD ••
30"50 DATA "STOP "

This is included as an example of what may be entered. Note that the text
must end with a DATA statement with STOP in it - this will redirect the
program to the beginning of the material again.

Going Further
I) What about including some reference to the Dragon's timing function,
so that an assessment of speed can be made.
2) Perhaps when a wrong key is depressed it could flash, thus giving the
user a better indication of where he or she is going wrong.
3) Far better than random sentences would be to enter some exercises from
a good typing tutor.

6.3 TEXTED

Another useful and none too lengthy contribution in the text field, this one
thinks that it's a word processor. Indeed it is capable of apeing many of the
abilities of more expensive systems. Built into it are some features of
special interest to those who own, or hope to own, a printer to go with their
Dragon.

MODULE 6.3. 1

J 000 REM************************
1 0 1 0 REM J N J: T J AL J SE
1 020 REM************************
j.030 CLS
j.040 PCLEAR 1 • CLEAR 20000
J e�0 D I M TEXT• < �00 >
1 860 LET LL- 1 • LET PLACE- 1
j.070 LET TEXT• < 0 >-STR X N G• < 3 2 � CHR•< 1 1 8 > >
1 080 LET TEXT•< 1 >-STR J NG• < 3 2 , CHR•< 1 26 > >
1 09'0 GOSUB 2 1 :20

This module initialises the main array TEXT$, which is used to hold the
text input by the user. The two strings stored in positions zero and one are
simply visual markers of the beginning and end of the text.

128

Chapter ti Handy programs

MODULE 6.3.2

1 ::500 REM************************
1 ::5 1 0 REM EDIT L INE
1 ::520 REM************************
1 ::5::30 LET A•-" "
1 ::540 LET P-0 • PRINT � 12*32,A•
1 ::5::50 LET T•-I NKEV• • 1 F T•-"" THEN POKE 1 0
24+ 1 2*32+P,17::5 • POKE 1 024+ 1 2*32+P,ASC<MID
•<A•,P + 1 >> • GOTO 1 ::5::50
1::560 IF LEN<A• >-6� OR T•-CHR•< 1 3 > THEN G
osue 2000
1 ::570 I F T•-CHR•< 94 > THEN GOSUB 2::500
1 ::580 IF P< LEN<A•>- 1 AND T•-CHR-< 1 2> THEN

LET A•-LEFT•<A•,P >-MID-� A - , P +2> • GOTO 1 6
, 0
1 ::590 IF T • < >CHR.<8 > AND T • < >CHR•<9 > AND

<ASC < T $><32 OR ASC<T • > >90 > THEN GOTO 1 ::54
..

1 '600 IF T•< >"" AND T•< >CHR•< e > AND T•< >
CNR•<9> THEN LET A•-LEFT•<A• , P>+T--MID•<
A• , P+ 1 > • LET P-P- 1
1 '6 1 0 PRINT � 1 2*::32,A•
1 620 IF T•-CHR•<9> AND P< LEN<A•>- 1 THEN
L-ET P-P-+- 1
1 630 IF T•-CHR•<e > AND P >0 THEN LET P-P­
>
1 640 GOTO 1 ::5::50

The function of this module is to allow the user to build up two lines of text
at the bottom of the screen, including the ability to edit them, before they
are placed into the main body of text at a specified point.

Commentary

Line 1550: The purpose of this line is to flash a cursor over the letter of the
string A$ pointed to by the variable P.

Line 1560: A string is entered into the main body of text either when the
user presses ENTER or when the length of the string reaches two lines of
display.

Line 1570: Pressing the up arrow key calls up another part of the editing
mode which will be discussed later.

Line 1580: Pressing the CLEAR key results in the deletion of the letter over
which the cursor is currently flashing.

Line 1600: If an input falls into the group of normal text characters, then it
is added to the string being built up.

Lines 1620- 1630: The left and right arrowed keys move the flashing cursor
along the line in the desired direction.

129

The Working Dragon

Testing Module 6.3.2
Entering a temporary line 2120 RETURN should allow you to build up two
lines of text in the lower part of the display. You should be able to move the
cursor backwards and forwards over the string, to delete letters or words
and to insert letters or words, either at the end or into the middle of the
string.

MODULE 6.3.3
2000 REM************************
:20 1 0 REM X NSERT L I NE
2020 REM ***********************
2030 IF LEN< A• > >33 THEN LET X-2 ELSE LET

x-1

2 0 4 0 F O R J -LL-X TO PLACE+X STEP - 1 • LET T
EXT•< I >-TEXT•< I -X > • NEXT J
20�0 %F LEN< A• > >33 THEN LET TEXT•C PLACE >
-LEFT9< A • > 32 > • LET TEXT•< PLACE- 1 >- M X O•< A•
> 33 , LENC A• >-33 > • ELSE LET TEXT•< PLACE >-LE
FT•< R• , LEN< R• > >
2060 FOR 1 -0 TO X-1
207"0 XF R J GHT•< TEXT•< PLACE+ J > , 1 >- " " THE
N LET TEXT•< PLACE + :C >-LEFT•< TEXT•< PLACE+%
> , LENC TEXT•C PLRCE+ :C > >- 1 > • COTO 2070

2080 l••U�XT %
209'0 LET A•- " " • LET P-0 • PR X NT at 1 3*32 , " "
• PR X NT m 1 2* 3 2 , A•

:2 1 00 PR I NT (2 1 4*32 , " "
2 1 1 0 LET LL-LL+X • LET PLACE-PLACE+X
2 1 20 :CF PLFICE<� THEN LET START-0 ELSE LE
T STFIRT-PLACE-�
2 1 30 CLS • FOR :C -START TO START+9 • PR J NT TE
XT•< J > J • :CF LENC TEXT•< J > >< 32 THEN PR :C NT
2 1 40 :CF % -PLACE-1 THEN PR I NT CHR•< 62 >
2 1 �0 NEXT J • PR J NT STR J NG.C 3 2 , CHR•C 1 7� > >
2 1 60 RETURN

This module inserts the line of text built up in the lower half of the screen
into the main body of the text and prints a part of the main body of text in
the top half of the screen.

Commentary

Lines 2 03 0-2 05 0: Depending on whether one or two lines of text were
entered onto the lower part of the screen, a space is made for it (them) in the
main array at the point indicated by the variable LL.

Lines 2 060-2 08 0: The newly entered lines are stripped of any trailing
spaces which take up memory unnecessarily.

Lines 2 09 0-2100: A$ is reset equal to one space (note that here and in line
15 3 0 A$ is not an empty string - it is made up of one space). And both of
the lines used in the lower half of the screen are cleared.

Lines 212 0-215 0: The portion of text around the newly inserted lines is
reprinted on the upper half of the screen to include them.

130

Testing Module 6.3.3

You should now be able to enter your text onto the upper half of the
screen by pressing ENTER when you have built up a satisfactory string at
the bottom of the screen.

MODULE 6.3.4

2�00 REM************************
2�10 REM MOVE ED I T L YNE
2�20 REM************************
2".'5�0 IF PLACE < � THEN LET P2-PLACE ELSE L
E'.:T p;:2: ... =,
2:=540 LET 11•- :r NKEY• • IF'" T1•-"" THEN PRINT

� P:2,t,:32 , " " • PR I NT � P2*32, " > " • GOTO 2="40
2".'5�0 IF PLACE > l AND T1• -CHR• < 94 > THEN LE
T PLACE-PLACE-l • GOSUB 2120
Z".'560 I F PLACE >10 AND 1 1 •-"Q " THEN LET PL
ACE-PLACE-10 · GOSUB 2120
2".'5?0 IF PLACE< LL AND T1$-CHR•<10> THEN L
ET PLACE-PLACE-1 • GOSUB 2120
:2".'580 IF PLACE< LL-9 AND T1• - "' A '' THEN LET
PLACE-PLACE-10 • GOSUB 2120
2�90 IF T1• -CHR•<13 � THEN RETURN
Z-S:00 :J F PLACE<: L L AND T1•- " D " THEN LET LL
-LL-1 • FOR r -PLACE T O L L LET TEXT•< I>-TEX
T• < l -+ 1 > , NE�T Y , LET TEXT•< LL+ 1 ::-- "" • GOSUB
::212e,
2610 :CF PLACE < L L ANO T 1 * - " C " THEN FOR :t -
3 2 TO 1 STEP - 1 :C F M :C D• < TEXT•<PLACE> . I , 1
..., _ " " THEN NEXT I , ELSE LET A•-LEFT•< TE:-<T

•<PLACE ::- .. I >-+-" " RETURN
2620 :C F T 1 • - " F " THEN GOSUB 3000
26:30 IF T191- " P " THEN GOSUB 3-:500 , CLOSE:£-2
;2640 , IF T1•- " S " THEN GOSUEI 6000
:2£�0 GOTO 2!530

Apart from calling up three more edit functions which have not yet been
entered, the purpose of this module is to move a flashing > cursor up or
down through the main body of text. The position of the cursor indicates
either where new lines are to be inserted or where other edit functions are
to be carried out.

The module is called by entering the up arrow in the course of Module
2.

Commentary

Lines 2550-2580: The cursor can be moved by means of the up or down
arrows (one space) or the Q and A keys (10 spaces).

Line 2600: Input of D results in the deletion of the line immediately below
the cursor.

Line 2610: Input of C results in the line immediately below the cursor
being recalled to the bottom of the screen, although it is not deleted from
the main body of text.

Line 2620: Input of F calls up the text formatting module.

1 3 1

I he Worl<mg uragon

Line 2630: Input of P results in the current text being printed on a printer if
connected.

Line 2 640: Input of S calls up the data file module.

Testing Module 6.3.4
Having entered some text you should now be in a position to move the
flashing cursor, to delete lines and to recopy to the bottom of the screen
lines previously entered.

MODULE 6.3.5
3000 REM************************
3 0 1 0 REM FORMAT L 'I N E
3020 REM************************
3030 FOR 'I -1 TO LL-2
3e4e 'IF LEFT•< TEXT•<'I >,1 >-CHR•< 126 >THEN
GOTO 3 1 20
30!!50 'IF TEXT•< 'I > - " " OR TEXT•< 'I+ 1 > - " •• THE
N GOTO 3110
3060 LET SPACE-32-LEN < TE><T•< X > >
3000 LET 'I TEM- 'I NSTR< TEXT•< X -1 > > " • • >
3090 'IF SPAC E >- 'I TEM AND X TE M > 0 THEN LET
TEXT•< 'I >-TEXT•< 'I >- •• "+LEFT•< TEXT•< 'I + 1 >, X
TEM- 1 > • LET TEXT•< 'I + 1 >-M 'I D•< TE><T•< 'I + 1 > , 'I T
EM+ 1. > • GOTO 3060
3 1 00 'IF LEN< TE><T•<'I +1 > >< SPACE THEN LET T
EXT•< :I >-TEXT•< 'I > + " "+TE><T•< 'I + 1 > , FOR _,_ 'I +
1. T O LL • LET TEXT•< J >-TEXT•< J + l. > • NEXT J • L
ET LL-LL-1 • LET PLACE-PLACE-1 • GOT03060
3 1. 1 0 NEXT X
3 1 20 GOSUB 2 1. 20
3130 RETURN

The effect of this module is to examine each line in the main body of text,
together with its following line, and to determine whether the transfer of
the first word from the following line would make the first line longer than
3 2 characters. If it is possible to transfer the first word, then this is done. If
it is possible to transfer the whole of the following line into the first line
without exceeding 32 characters, then this is done. Only in the case of an
empty line will the program not attempt to run together the two lines of
text. Empty lines are therefore used to separate paragraphs and the like.

Although not perfectly right-justified, text which has been processed
with this module will be quite tidy. The module therefore allows the user to
enter text without too much regard for appearances, knowing that the
module can be used to tidy up the text later.

Testing Module 6.3.5
You should now be able to input a series of individual words on separate
lines, call up this module and see them formatted into a single line. Single
words on separate lines can be inserted into the main body of text or lines
modified to include a word overlapping onto the next line and this module
used to reformat the text. No formatting should take place for the lines
immediately before or after an empty line entered into the array.

132

MODULE 6.3. 6
3!500 REM************************
3!5 1 0 REM OUTPUT TO F" R l: NTER
:3!52:0 REM************************
3!530 OPEt-, " 0 " , £-2, "TE><TED"
3!540 LET x-1
:3!5!50 IF X-LL THEN P R X N T £ -2 , " " • RETURN
:3!5€0 :tF TEXT•< X > - ·• " THEN PRINT £-2 .• " " , LE
T x-x+.1 GOTO 3��0• ELSE PRINT £ - 2 , TE><T• < x
> } " " ;

::3!57'0 l: F X -+- 1 -LL THEN P R I N T £ - 2 , " " • RETURN
3!580 IF TEXT•< X-+-1 > - " " THEN F"R X NT £-2, "" •
F"R l: NT £:-2, "" • ELSE PRINT £-2,TE><T•<><-+-1 >
3!590 LET ><-X-+-2• GOTO 3!5!50
31!!;;00 PRINT £-2:, ""
36 1 0 RETURN

Input of P from Module 4 will call up this module, which will in turn print
the main body of text on a printer. Note that since the width of text on a
printer is usually at least double that of the Dragon screen's 32 characters,
two array lines are run together for each line printed (except where one of
the two is a blank line).

MODULE 6. 3.7
6000 REM************************
60 1 0 REM DATA FILES
6020 REM************************
6030 CLS • MOTOR ON• AUD I O ON • INPUT "POSITI
ON TAPE <MOTOR :IS ON > THEN PRESS -�t
...... . · ' } Q ...
6040 MOTOR OFF < AU D :I O OFF• :I NPUT "PLACE RE
CORDER IN CORRECT MODE THEN PRESS •�t�.-.
·· J Q9
60!!50 J: NPUT " 1 >SAVE_...._.... _...._....2 >RECALL , "J Cl! , ON Cl
GOT06070 , 61:30
6060 GOTO 60!50
6070 MOTOR ON • FOR I- 1 TO 1 0000 • NEXT :I • OP
EN • • Q" , £- 1 , "TEXTED••
6080 PRINT £ -1 , P LACE,LL
6090 FOR I-1 TO LL-1 PRINT£-1 , TEXT• < I > • N
EXT :I
6 1 00 CLOSE £ - 1
61 1 0 GOSUB 2 l 30
6 1 20 RETURN
6 1 30 OPEN "I", £-1 .• " TEXTED "
6 1 40 INPUT £-1,PLACE,LL
,£'.1�0 FOR l: -1 TO L L - 1 • :INPUT £ - 1 ,TE><T•< :I > •
NEXT I
6160 GOSUB 2120
617"0 CLOSE £-1
,£'..180 LET TEXT• < LL >-STR:ING• < 32,CHR•<126 > >
6190 RETURN

A standard data-file module.

Summary
This program is a tribute to the speed of the Dragon, without which many
of the processes involved, including editing on the screen, with its resultant
constant reprinting of the string, would be painfully slow. The techniques
of on-screen editing bear some study, since altering something while you
look at it is by far the easiest way of making changes to almost anything and
could be incorporated into a wide variety of programs where strings have
to be changed - including most of the programs in this book.

133

TEXTED: Summary of one•key instructions:
With flashing cursor at bottom of screen:
Text characters may be entered at position of flashing cursor.
Left and right arrows move cursor over string.
Up arrow calls up remaining editing command modules.
ENTER places current string into main body of text at position indicated
by > .
CLEAR key erases letter immediately under cursor.
With flashing > at top of screen :
T. l, Q and A move cursor up and down through main body of text.
D deletes line immediately below cursor.
C copies line below cursor to lower part of screen (original is

not deleted).
F formats text.
p
s
ENTER

prints text if printer is connected.
calls up data-file module.
returns control to lower screen cursor.

6.4 MUSIC

All work and no play etc., so this program does just that - plays. Like the
DRAW function that we have used in several places, Dragon Data have
built a flexible string driven music command called PLAY. In this program
we take advantage of the Dragon's ability to play about with strings, to
literally edit music.

Before entering this program it would be a good idea to go back to the
Dragon manual to check up on the basics of the PLAY. You will find the
details in Chapter 9 of the manual.
MODULE 6. 4. 1

6000 REM************************
60 1 0 REM DATR F I LES
6020 REM************************
60::310 MOTOR: ON • PIUOJ:0 ON • CLS • J: NPUT " POST J: 0
N TRPE THEN PRESS •nt•� <MOTO� :I S ON > •
"; Cl.
6040 MOTOR OFF • I NPU"!" " PLRCE fltECO�DER J: H
CORRECT MODE � THEN ,-RESS ,ornt-� • " J CI•
60!!50 PR J: NT • PR I NT " 1 >SAVE " , , ••2 > RECALL " • I
NPUT " WH I CH DO YOU RECIUIRE • " J Q
6060 ON Q GOTO 6080,6 1 60
"60'7'0 GOTO 60!!50
6090 MOTOR: ON • FOR J: - 1 TO 1 0000: • N�><T I
6090 OPEN " 0 " , £ - 1 , "MUSIC••
6 1 00 PR Y NT £ - 1 , N
6 1 1 0 FOR I-0 TO N
6 1 20 PR I NT £- 1 , TUNE• < I >
6 1 ::310 NE><T I
6 1 40 CLOSE £.- 1
6 1 �0 RETURN
6 1 60 OPEN '"I'' , £- 1 , ''MUSIC"'
6 1 '7'0 INPUT £ - 1 , N
6 1 80 FOR: I -0 TO N
6 1 �0 INPUT £- 1 , TUNE• < I >
6200 NE><T I
62 1 0 CLOSE £ - 1
6220 RETURN

A standard data file module.

134

Chapter 6 Handy programs

MODULE 6. 4. 2
7000 REM************************
7 0 1 0 REM HELP
7020 REM************************
7030 CLS • PRINT "THE FOLLOWING FUNCTIONS
ARE AVAILRBLE • "
7040 F"RINT • PRINT "THE CURSOR MRY BE MOVE
D BY MERNSOF THE 4 CURSOR RRROWS . THE

NOTES DISPLAYED CAN BE MOVED 10 FORWAR
OS OR BACKWARDS BY USE OF THE • AND q KE
YS - "
70'50 PR I NT PR I NT " L.JHEN T H E CURSOR IS OPP
OSITE THE REQUIRED NOTE IT CAN ALSO MOVE
0 TO THE RELEVANT PART OF THE NOTEBY USE

OF T H E KEYS 1- _. o .- v ANO "
7060 PRINT, INPUT " PRESS _..,...t;:..-..-- FOR MORE • "
_, Q ..
707"0 CLS • PRINT "A P -111. •..o.s.- CAN BE INSERTED
BY PRESSING P t.JHEN OF"POSITE THE
RELEVANT ENTRY. HAVING ENTERED APAUSE IT

CANNOT BE CHANGED BACK BUT MUST BE DELE
,-e:o . "
7000 P'RINT • PRINT "F"RESSING d WILL RESULT

IN THE DELETION OF THE NOTE NE�T TO T
HECURSOR . "
7090 PRIN T • PRINT "PRESS I NG :I. WILL ALLOW
A NEW NOTETO BE INSERTED IMMEDIATELY

BEFORE THE CURF:!:ENT NOTE . "
7 1 00 PRINT INPUT "PRESS ENTER FOR MORE• "
; Q!!II
7 1 1 0 CLS • PR :t NT "TO CHANGE THE DURATION 0
F A NOTETO A DOTTED VALU E � PRESS THE
FULL STOP . TO CHANGE BACK TO ANORMAL V
ALUE PRESS THE SEMI- COLON KE"'r' . "
7 1 20 PRINT PR X NT "TO DETERMINE THE TEMPO
� PRESS t ANO ENTER THE DES X REC> VALUE WH

ENF=>ROMPTEC>. "
7 1 30 F=>R X N T • PRINT "TO PLAY THE TUNE PRESS = THEN SF"ECIF"'r' THE STAF:!:T AND FINISH

F'O X NTS . "
7 1 40 PRIN T , INPUT "PRESS •-nt.-..-- FOl=i! MORE • "
_, Q91
7 1 '50 CLS,PRINT• PRINT "IF THE TUNE HAS NO
T BEEN FINISH E D � IT CAN BE SAVED
IN ITSC>EVELOPING FORM BY PRESSING � -

,-HIS SFIME KEY L.J X L L ALSO ALLOWTHE RECALL
OF R Pl=i!EVIOUS TUNE W H I CH HAS BEEN STO

Fi.:EO B"'r' THIS METHOD . "
7' 1 "60 PR l t-,T PRINT "A FINISHED TUNE CAN BE

STORED ON TAPE B"'r' PRESSING c: . "
7' 1 ?'0 PR I N T • INPUT " PRESS _. t..-..-- FOR MORE • "
.o Q9
?' 1 90 CLS• PRINT "REMEMBER THAT YOU OD NOT

HAVE TOENTER FI VFILUE FOR EVER"'r' ITEM
,-HRT MFIKES . UP THE NOTE . IF YOU 00 NOT S
PECIF"'r' FI VALUE � THE ONE GOVERNING THE PR
EVIOUS NOTE WILLBE INSERTED- PRESSING •-n
te-..-- RESULTS IN AN"'r' CHANGES BEING REC
ORDED . "
7' 1 9'0 PRINT• PRINT "ONCE T H E CURSOR IS MOY
ED OVER THE NOTE - IT CAN ONLY BE MOVED

OFF AGFIIN B"'r' THE USE OF _..,...1::,._.,- _ "
7200 PRINT • X N PUT "PJ:;1:ESS _.-nt-- TO RETURN
TO MAIN PROGRAM • " � et•
72 1 0 RETURN

This is the only program in this book to contain such a module as this,
known as a Help function. Its aim is to present the rules of the program on
command. It is included here partly because this number has more one-key
commands than any other in the book, and partly because I felt you should
have an example of such a module anyway. Some people have no trouble
with one-key commands, after a couple of tries of the program with the
instructions in front of them they never look back. Others do not find them
so easy - in which case all they have to do is to press H during the main
program section and they can page through these instructions. Such a

135

The Working Dragon

module could easily be added to many of the programs in this book where
memory space is not the prime consideration.
MODULE 6. 4. 3

1 000 REM************************
1 0 1 0 REM INITIALISE
1 020 REM************************
1 030 CLEAR !!5000
1 040 DIM TUNE•<500 >
:1 0!!50 LET N - 1
1 060 LET TUNE•< t >-"L000 , 00 , V0 0 J 00"
1 0?' 0 DIM LRST•< 4 > , LET LRST•< 1 > - " 004 , " • LE
T LAST•< 2 >- "2" • LET LAST•< 3 >-" 1 5" • LET LRS
T•< 4 >- "' 0 1 "
1 000 DIM TEMP•<3> • DIM STORE•<20 >

Initialises the program. The arrays will be discussed later.
MODULE 6. 4. 4

1 !!500 REM************************
1 5 1 0 REM PRINT NOTES FOR EDIT I N G
1 �20 REM************************
:1 !!530 IF NN >N THEN LET NN-N
1 540 IF NN< l THEN LET N N - 1
1 �50 L E T P-0 • LET P2-0
1 560 LET N2- 1 3• 1 F N2+NN>N THEN LET N2-N­
NN
:1 '!5?'0 CLS • FOR :r-0 TO N 2 • PRJ:NT US J: N G "£.£££
", NN+ :r � • PRINT"> "' , TUNE•< NN+I > • NEXT I
:1 590 LET T • - :t N KEY• • :IF T • - " •• THEN LET T-P
EEK< :1 024-+-F" > • POKE 1 024-+F" .• 1 ?'!!5 • F"OKE 1 024+F",
T • GOTO 1 590
1 590 J:F T•-CHR.< 1 3 > THEN GOSUB 2000 • LET

P-P2*32 • GOTO 1 560
:1 600 J: F T• -CHR•<94> AND F"2>0 THEN LET F"­

P-32:
1 610 IF T$-CHR•< 1 0 > AND P2<N2 THEN LET F"
-P+:32:
1 620 IF T• -CHR•<9 > AND F"-32*P2 < 1 0 THEN L
ET P - P + l
1 630 I F T•-cHR•<e > A N D P-32*P2< >5 T H E N L
ET P-P-1
1 640 IF T•-"A" AND P-32*P2-0 THEN LET NN
-NN-+- 1 0 • GOTO 1 530
1 6":50 l: F T$-"Q " AND P-32*P2-0 THEN LET NN
-NN-10 • GOTO 1 530
1 660 J:F T•-" X " THEN FOR :t -N TO NN..,.P2 STE

P- 1 , LET TUNE•< I+ 1 >-TUNE•< I > • NEXT I • LET T
IJNE!!II< NN..,.P2: > - " L000.• 00 ., V00 .• 0 0 " • LET N -N - 1 • G
OSUB 2:000 • GOTO 1 560
1 670 IF T•-"D" THEN FOR I-NN..,.P2 TO N • LET

TUNE•<I >-TUNE•< :t + l >• NEXT I • LET N-N- 1 • GO
TO 1 560
1 690 IF PEEK<1 02:4+P > > l 1 1 �ND PEEK < 1 024+

P >< 1 22 AND T• > " _.,,. " AND T•<" • " THEN M l: D*C: T
UNE9<NN+P2 > . P-32*P2-4 >-T• • F"RINT � P2:�32-+
;;: .;..TUNE•< NN+P2: > • :r F P-32*P2< 1 8 THEN LET P-

1 690 J: F T•-"L " THEN LET P-32:*P2..,.6
1 ?'00 IF T•-"O" THEN LET P-32:*P2:-+ 1 1
1 ?' 1 0 I F T•-" V " THEN LET P-32*P2..,. 1 4
1 720 IF T$- "N " THEN LET P-32*P2:..,. 1 7"
1730 IF T • - •• p •• THEN MID• C: TUNE•C: NN+P2 > . 1 >
- " P " , LET TUNE•< NN..,.P2 >-LEFT•< TUNE•C: NN+P2: >
,� > • P R J: NT � �2*P2+5 , TUNE•C: NN+P2 > • L�T P-3
2*P2+6
1740 J:F T•-··M" THEN cosue 2500• GOTO 1 !570
1 ?'50 l:F T•< > "T "' THEN GOTO 1 ?'?'0 • ELSE PR'IN
T � 1 4*32 . '' '' , • l: NPUT ''TEMPO • '' � TEMPO • IF TE
MP0< 1 OR TEMP0>2!5!5 THEN GOTO 1 ?'!50
1 760 LET TUNE.0:: 0 >- "T "+STR•<TEMPO >
1 770 IF T•- •• • " THEN M J: D•< TUNE•< NN+P2: > . 5..;>
-T• • GOTO 1 !5712!1
1 700 IF T• - " J " THEN MID•< TUNE•c: NN..,.P:2 > . � >
-T• • GOTO 1 570
1790 IF T• - "C " THEN GOSUB 3000 • GOTO 1 �'60
1 800 J: F T•- " S .• THEN cosue 6000 • GOTO 1 !!5!50
1 9 1 0 IF T•- " H " THEN c;osue 7"000 • GOTO 1 !!560
1 020 LET P:2- J: N T<P-32: >
1 €'30 GOTO 1 500

136

Chapter 6 J.landy programs

Believe it or not, there is hardly anything to this module. All it really
consists of is a cursor move module with a series of simple operations
revolving around moving the cursor or editing the contents of the screen.

Commentary
Line 1 530: N is the number of notes so far entered. NN is the position of the
cursor in the list of notes.

Line 1550: P represents the posi1ion of the cursor on the line. P2 represents
the position of the pointer down the page.

Line 1 560- 1570: N2 isthe end of the display - if N2 is 50then the 14 notes
up to note 50 will be displayed.

Line 1580: The same type of flashing cursor as found in Texted.

Line 1 590: Pressing ENTER results in a note being registered - you
cannot yet do this.

Lines 1600- 1610: Up and down arrows move cursor.

Lines 1620-1630: Left and right arrows move cursor.

Lines 1640-1650: As in Texted, the A and Q keys are used to specify a
move of 10 places for the cursor.

Line 1660: Pressing I results in a new note being inserted immediately
before the note the cursor is currently opposite.

Line 1670: Pressing D deletes the note the cursor is currently opposite.

Line 1680: If the input is in the range0-9, it replaces the character under the
flashing cursor.

Lines 1690- 1720: The format of the notes when they are displayed is
shown in line 1060. The first four characters will store the length, the next
two the octave, the next three the volume and the final two the note - the
notation is the one using figures rather than letters to represent notes.
Input of L,O,Y or N moves the cursor immediately to the first figure (not
letter) ofthecorresponding note. This saves a great deal of button pushing.

Line 1730: Inputting P results in the note being transformed into a pause.
The length of the pause can be edited but it cannot be edited back to a note.

Line 1740: Inputting M calls up the module which plays the tune as
developed so far.

137

lhe Working Dragon

Lines 1750- 1760: Inputting T allows the user to specify the tempo.

Line 1770: Pressing . results in the note length becoming a dotted value.

Line I 780: Inputting ; removes a dotted value, if present.

Line 1 790: Inputting C (for compile) leads to the tune being processed into
the form of string under which it will eventually be saved and the user given
the option of saving it.

Line 1800: Inputting S allows the current tune to be saved in its multi-line
form or a tune saved in this form to be picked up and worked upon. Tunes
saved in the C format cannot be re-edited by this program.

Line 1820: Inputting H calls up the help function.

Testing Module 6.4.4
Sorry, but you can't yet.

MODULE 6.4.5

2000 REM************************
:20 1 0 REM X NSERT DEFAULT VALUES
:2020 REM************************
:2030 IF LEFT•< TUNE.< P2+NN > , 1 >- " P " THEN L
ET TUNE•<:: P:2+NN >-LEFT•< TUNE•< P2+NN > , � > • GO
-ro 2ee0
2040 RESTORE • FOR I - 1 TO 4
:20�0 READ PL , LL
2060 X F VAL< M X D•< TUNE•< P2+NN > , PL .• LL > >-0
THEN M X D•< TUNE•<P:2+NN > , PL >-LAST•< X > ELSE

LET LAST•< X >- M X D•< TUNE•< P2+NN > , PL , LL >
:2070 NEXT X
2000 X F P:2+NN-N THEN LET N-N+ l • LET TUNE•
<:: N >-" L000 ., 00 ., V00 J 00" • LET P:2-P:2+ 1
:2090 RETURN
:2 1 00 DATA 2 , 4 , 7 , 1 , 1 0 , 2: , 1 3 , :2

If the thought of entering all the data necessary to fill the format shown in
line 1 060 has you daunted, then don't worry because for most tunes this
module will do the work for you. What it does is to allow you to specify
only those values that are different from the previous not entered. Any that
are not specified are given a default value equal to their value in the
previous note. Default values are set initially by line 1 070. Values are
inserted by reading the positions of the various sections of each note from
the DAT A statement.

138

Chapter 6 Handy programs

Testing Module 6.4.5
You should now be able to perform all of the functions described so far
except for those of playing the tune and compiling it for permanent
storage.

MODULE 6.4.6

2�00 REM************************
2�10 REM PLAY TUNE
2!!520 REM************************
2�30 P R Z N T I!! 32*14, •• ") • :I NPLIT "START
T • ••; START
��40 :INPUT ''F :I N :I SH P O :I NT • '' J F I N :I SH • :I F F :I N
:I S H >N-1 THEN LET F Z N :I SH-N-1

2�!!50 FOR :I -START TO F Z N :I SH
2!!560 :I NPUT "D Z SPLAY NOTES < V/N :> • " J a•
2!!570 FOR :I -START TO F I N :I 9H
2!!580 :IF G:!*- "V" THEN P R :I N T US :I NG '' £ £ £ £. '' J :I
J • PR :I NT " :, " J TIJNE•< :r :,
%�90 PLAY TUNE• < :r :,
'211!500 NEXT l'.
2610 RETURN

A straightforward module which plays lines of the array TUNE$ between
points specified by the user. Displaying notes as they are played makes the
music sound slightly stacalto.

Testing Module 6.4.6
You should now be able lO play part of any tune you have entered.

MODULE 6.4. 7

3000 REM************************
3010 REM STO�E TUNE
::3020 REM************************
3030 LET TEMP• <: 0 >-LEFT• <: TUNE• <: 1 :> , !!5 :>
3040 LET TEMP•< 1 >-M Z D•< TUNE•< 1 > , 6, 3 >
30�0 LET TEMP• <: 2 >-M Z D• < TUNE•<: 1 :> , 9 , 4 :>
3060 CLS , INPUT "NAME FOR TH :I S TIJNE • •• J Cl• •
LET STORE•< e >-Q•
3070 LET ROWS-1
::9"080 FOR :I -1 TO 20 • LET STORE• < :[>-" •• • NEX
.,.
::3090 LET STORE•< ROWS >-TUNE•< 0 >-·• J "-TUNE•
< 1 >- " } ..
3100 FOR :r -::z TO N-1
::31 10 :IF LEFT• < TUNE•< :I > -• !!5 ><: :>TEMP•< 0 > THEN

LET STORE• < ROWS :>-STORE• < ROWS :>+LEFT• < TUN
ES• < r >,� > · LE r TEMP-< 0 >-LEFT• < TUNE• < :r > , !!5 >
::3120 I F M :I D• < TUNE• < :r >,6,3 ><: >TEMP• <: 1 > THE
N LET STORE•< ROl.JS >-STORE• < ROWS >+M:ID•< TUN
E•< :r :> , 6 , 3 > • LET TEMP• < 1 :>-M l'. D• < TUNE• < :r :> , 6,
"' ,
3130 r F M :I D•< TUNE• < r :>,9,4 ><: >TEMP• < 2 > THE
N LET STORE•< ROl.JS >-STORE•< ROWS >+M:ro•c TUH
E$< :I > , 9 , 4 ::> · LET TEMP• <: 2 :>-M Z D• < TUNE• < Z > , 9 ,
4 ,
�140 LET STORE• < ROWS >-STORE• < ROWS :>+M:IO•<
TUNE•< :r :>,13 � 2 >+ '' J ''
::31 !!50 Y F LEN< STORE•< ROl._,S > :> :>200 THEH LET R
owS-ROWS+1
:3160 NEXT :I
::3170 FOR :r - 1 TO ROWS • PLAV STORE• < :r > • NEXT

r
3100 CLS • %NPUT "DO VOU WANT TO SAVE <: Y/N
:> , " > QIII · :I F GJ•<: > "V " THEN RETURN

:31:90 CLS• MOTOR OH • AUD Y O ON• ZNPUT "POS :I T Z O
N Tl"=IPE THEN PRESS _.-nt.-r- < MOTOR :I S OH > ' • •
, c•
:3200 MOTOR OFF , AUD :I O OFF • l'. NPI.JT "PLACE RE
CORDER IN .--�ord MODE THEN PRESS •-nt•r
• ·· , Cl$

139

The Working Dragon

32 1 0 MOTOR ON · �OR I- 1 TO 1 0000• NEXT I
3220 OPEN "0 ",£- 1 , "PLAV"
3230 P R X NT £ - 1 ,ROWS
3240 FOR I -0 TO ROWS
32�0 PRINT £ - 1 , STORE• C X >
3260 NEXT l:
3270 CLOSE £ - 1
:3200 RETUF-':N

This module compiles the tunes into an economical format for storage on
tape.

Commentary

Lines 3030-3050: The three lines of TEMP$ are used to store the last
values of length, octave and volume (in this case those of the first note).

Line 3090: The name of the tune and the first note are stored in STORE$.

Lines 3 100-3160: The contents of TUNE$ are added to STORE$. Note
values are always added, but other details of a note are only added if they
differ from the last value specified, since PLAY works on a default basis ­
the last value for length, volume and octave governing all following notes
until another value is specified.

Lines 3170-3280: The resultant string is PLA Yed and the user is given the
option of saving it if it is satisfactory.

Testing Module 6.4. 7
The module should, after a pause, play the desired tune and give the option
of saving it.

MODULE 6.4.8

0000 REM************************
0 0 1 0 REM P l: CK UP TUNE
0020 REM************************
9030 CLEAR �000 • OPEN" :r " , £- 1 , "PLA'r' ••
0040 INPUT £ - 1 , ROWS
00�0 FOR 1: -0 TO ROWS
8060 l:F EOFC - 1 � THEN GOTO 0090
'9070 :tNPUT -£ - 1 ., STORE• C X >
8080 NEXT l:
0090 CLOSE £ - 1
0 1 00 FOR Y - 1 T�ROWS · PLAV STORE9C l: > • NEXT l:

This module serves no purpose whatsoever in this program but is placed
here to give you an example of the kind of module that would be needed to
pick a tune from tape and play it. If you have compiled and saved a tune,
you can test this module and the last by stopping the program, re-RUNning
it to initialise the variables, stopping it again and then entering GOTO 8000
(don't forget to position the tape). The original tune should be played
again when loading has finished.

140

Chapter 6 Handy programs

Summary
This program well illustrates the world of difference between a
screen-editing approach to d ata and one relying on response to prompts.
Imagine the length of this program if each possibility had to be spelt out in
a menu at various stages.

Going Further
1) This program will only really come into its own when, like Artist. it is
integrated into your program library as the supplier of material for other
programs to work on. Most programs could benefit from the addition of a
bit of sound now and then and the memory cost should not be high.

MUSIC: Summary of single-key commands:
Up and Down arrows, A and Q move cursor up and down.
I places new line before line indicated by cursor.
D deletes line indicated by cursor.
0-9 changes value of any number cursor is placed over.
L,0, V or N move cursor immediately to relevant section of note.
P changes note to pause - it cannot be edited back, o nly

deleted.
M
T

plays all or part of tune.
allows setting of tempo.

. and ;
C

change to dotted note value and back .
compiles tune and gives option of saving.

s saves tune in form such that it can be reloaded by this
program.

H
ENTER

calls up help function.
registers note on the same line as cursor. N.B. when cursor
has been moved over a note it can only be removed by
pressing ENTER.

6.5 GRAPH

Earlier on, in the chapter on high resolution text, you were promised an
example of a program using such text in an efficient manner. This is it.

Apart from that not inconsiderable feature the program is a graph
drawing tool, enabling the user to draw line graphs of a variety of data,
specifying the units and the set-up of the axes.

MODULE 6.5.1

6000 REM************************
60 1 0 REM DATA F r LES
6020 REM************************
,S:030 Mo-r·oR ON • AUD r o ON • :I NPUT "POS :I T :I ON T
APE TI--IEN PRESS �-,-,t..-.- < MOTOR r S ON :> , " ., f:.t•
• MOTOR OFF'"

6040 PRINT · :I NPUT "PLACE RECORDER :IN CORR
ECT MODE TI--IEN PP:ESS ,e.-,-,t.e-r •• ; Q.

141

The Working Dragon

60"'50 PR INT , PRINT " F UNCT :t ONS AVA :t LABLE • " •
" 1 :>SAVE DATA" • • " :2: :>LOAD DATA" • - " 3 :>I_OAD CH
ARACTER SET" • :tNPUT ' ' WHICH DO VOIJ REQU :t RE
, " � Q • ON c::t GOTO 6070 . 6200 , 6270

6060 GOTO 1 000
6070 MOTOR ON · FOR J -1 TO 1 0000 • NEXT Y
6080 OPEN '' 0 "' . £- l • "' GRAPHS ''
6090 PR:tNT £-1 . • HOR .• ·�"ER .• LH , LV .. HM .• VM ., HO• .• V
E '!III . BASE , LIM I T , VV
6 1 00 FOR :r -0 TO HOR-1
6 1 1 0 PRINT £-1 - G< Y ,
6 1 20 NEXT Y
6 1 30 CLOSE £- 1 , OPEN "0" . £- 1 . "CHARSET"
61�0 P R :t NT £ - 1 , C T
61�0 FOR I -0 TO CI-1
6 1 60 PRINT £ - 1 , CH�R•< :r �
.S17<:?.'I NEXT :r
6 1 80 CLOSE £ - 1
6190 GOTO 1 000
6200 PCLEAR4 • CLEAR 1 0000• PCL S PMODE4 - 1
62 1. � OPEN " l: " .. £ - 1 , "GF-!:APHS"
6220 :tNPUT £ - 1 - HOR,VER LH,LV - HM - VM - HO• . v
E$ BASE , L T M :t T VV • DIM G< HOR-1 :> • D l: M CHAR9<
$'9 :>
6230

��;:
6260
62?'0
62E''?I!
6290
6300
63 1 0
6320
6330

FOF.': T -0 TO HOR- :t
INPIJT £ - 1 - G< I :>
NE><T Y
CLOSE £ - 1
OPEN ' ' I '' , £ -1, '' CMARSET ''
I NPIJT £- 1 .. C l'
FOR Y - 121 TO C J - .t
INPUT £- 1 . CHAR•� t �
NEXT Y
CLOSE £- 1.
GOTO 1e'l00

A standard data file module with the slight addition that it is also capable
of loading a character set created by the Dictionary program. Having
loaded that character set it is then saved and loaded with any data that is
stored on tape subsequently.

MODULE 6.5.2
7000 REM************************
7010 REM FORMAT TITLES
7020 REM************************
7030 LET P2- 1 4-INT< LEN< F• :>/2 :>
7040 PRl'NT m 32*P 1 +P2 . STR :tNG•< LEN< F• :>+2 ,
CHR'!III< 1 €'!!5 :> :>
70�0 PR X NT � �2�<P1+1 :>+P2 , CHR•< 1 9� :>+F•+C
HR,_< 1 9� :>
7060 PRINT � 32*< P � +2 :>+P2,ST� YNG•< LEN< F•
:>+2, CMR•C: 19� :> �
7070 RETURN

A standard title formatting module.

MODULE 6.5.3

1 000 REM************************
1 0 1 0 REM MENU
1 020 REM*-***********************
1 030 CLS , LET F• -"GRAPH" • LET P � - l • GOSUB ?"
000
1 040 PRXNT "COMMANDS AVAILABLE • "
1 0�0 PR:tNT " 1 :>SET UP FRAMEWORK
1 060 PR :INT " 2 :> J: NPUT VALUES"
1070 PRINT " 3 :>DRRW CRAPM"
j_ 000 PRINT " 4 :>DATA FILES"
1 090 PR % NT " !!5 :>STOP"
1 1 00 PR: X NT • INPUT "' W H I CH DO YOU REQUIRE • "
.• Z • CLS
1 1 1 0 ON Z GOSU0 2000, 3000,�000 , 6000 , 1 1 40
1 1 30 COTO 1 000
Ju�:0 CLS , LET F .. -" GRAPH" , LET P 1- 1 , GOSI.JB ?"

142

1.,naprer o Hanay pruy11m11,·

1 1 '!50 LET F•- " PROC:RAM TERM t NA TED " • LET P 1 -
e · Gosue ?'000
1 1 "50 END

A standard menu module.

MODULE 6.5.4
2:000 REM************************
:20 1 0 REM SET UP AXES
:202:0 REM************************
:2030 PCLEAR 4 • PMOOE 4 � 1 • PCLS • CLEAR 1 0000
• LET VM-999 • LET HM-999 • 0IM CHAR-<39 >

:2040 CLS • :lNPUT "HOW MANY INTERVALS ON TH
E HORIZONTAL AXIS • '' > HOR• LET LH- :lNT
< 2�,S/HOR >
:20�0 :lNPUT "HOW MANY INTERVALS ON THE

VERT :l CAL AX :l S • " > VER • LET LV- :l NT< 1 68/V
ER>
2060 PR T NT • INPUT "PRESS ,......,t,,_.,- TO V J: EW AX
E S � THEN ,e,....,t,,....- T O RETURN • " > Q•
:20?'0 GOSUE'I 4000
2090 IF :I NKEY•- " • • THEN GOTO 2:090
:2090 CLS • PRINT ., MARKERS AT REGLILAR INTER
VALS AREI-IIGHL I G HTEO • "
2 1 00 J: NPIJT "PLEASE l: NPUT GAP FOR HOR J: ZON
"f'AL H J: GHLIC:HT J: N G • " ,, HM
:2 1 1 0 INPUT "PLEASE J:NPUT GAP FOR VERT T CA
L HIGHLIGHT I N G , •• _, VM
:2 1 20 P R I NT , J: N�UT ''PRESS _.,.,1:.- TO VIEW AX
ES • THEN �.,.,t,,....- TO RETI_IRN • " , Q •
:2 1 :'.=10 GOSUE'I 4000
:2 1 40 T F INKEY•- •• •• THEN GOTO 2 1 4 0
2 1 !50 C LS • J: NPUT " J: S THPIT SATISFACTORY C V_,,.
N > • '' J l:l!II • IF o•- " N " THEN GOTO 2:000
:2 1 "50 INPI_IT "NAME FOR UN J: TS ON t-lORIZONTAL

AX Y S • " ; HO•
:21 ?'0 PR '.l NT • I NPUT "NAME FOR IJN Y TS ON VERT
::(CAL AXIS • " .• VE•
:2 1 80 PR YNT • 'I N PUT "M 'I N t MUM VALUE ON Tt-lE V
ERT 'I CAL AX I S • " 1 0ASE
2 1 90 PF<!INT • PRINT "MAXI MI_IM VALUE REPRESEN
TED BY" , VER; • Y MPUT " IJN 'I T S VERTICALLY • " •
L l: M T T
:2200 LET vV-C L ::l M I T-E'IASE >,,,.VER
:22 1 0 O 'I M GC HOR- 1 >• FOR r -0 TO t-lOR-1 • LET G
< t �--9�99 . 9 • NE�T '[• GOTO 1 000

The function of this module is to allow the user to specify the kind of axes
desired and the units to be represented.

Commentary
Line 2 03 0: The two variables VM and HM will ultimately store the pixel
interval between highlighting marks to be placed on the axes. They are set
to 999 so that the marks are not printed initially.

Lines 2 04 0-205 0: L V and LH are the pixel lengths of the units on the axes .

Line 2 2 00: VY will be used to plot the vertical position on the axis of any
data later entered.

Line 2 2 10: The array G is filled with -9999.9 simply because it is a value
unlikely to be in much demand in the entry of data - unlike zero.

143

1 ne Work.mg u,agon

MODULE 6.5.5
4000 REM************************
40 1 0 REM DRAW AXES
40:20 REM************************
4030 PCLS • SCREEN 1 � 1
40!50 FOR I-LH TO 236 STEP LH • DRALJ "BM"+S
TR9C 1 3+ I >+'' , 1 "7'6 J D2 , L ''+STR• < LH>+'' J D 1 J R''+S
-rR!II< LH >
40,S:0 IF C I/LH >/HM- I N T C C I /LH >/HM > THEN DR
AW " 1_16''
4070 NEXT :C
4000 FOR :C -LV TO 1 "7'2 STEP LV• DRAW " EtM 1 !5 ,
"+STRS<'. 1 7'7"-I >+" J L2 .• D" +STR•< LV+2 >+" L 1 ., U"+
$TR• < LV+:2 >
409'0 IF ('. I/LV>/VM-INTC ('. J: /LV >/VM > THEN DR
At.J " R,S: "
4 1 00 NEXT I
4 1 1 0 RETURN

This simple module draws the axes with divisions and highlighting marks
specified.

Testing Module 6.5.5

You should now be able to specify the form of the axes and see them
displayed.

MODULE 6.5. 6
:3000 REM************************
30 1 0 REM INPUT DATA
:3020 REM************************
:30:30 CLS • PRINT "POSITION X N " J HO• , • X NPUT

H 1 • IF H 1 >HOR THEN PR J: NT• PR J:NT "VALUE OU
TS Y DE RANGE SPECI F :C ED FOR HORIZONTAL A
X J S . " • FOR X - 1 TO !5000 • NEXT • C:OTO 3000
3040 PRINT• PRINT " QUANT XTY IN " J VE• , • INP
I_IT V 1 , IF V 1 > LIMIT THEN PR :INT • PRINT " VALU
E OUTSIDE RANGE SPEC X FIED FOR VERTICAL

AXIS - " • FOR :1 - 1 TO !5000 • NE><T • GOT0 3000
30!50 PRINT• :INPUT "ARE THESE CORRECT• " J CI•
, J F Q• - " N " THEN GOTO 3000

3060 IF GC H 1 - 1 >< >-9999 . 9 THEN PR I NT • PRIN
T " T HAT POSITION IS ALREADY FILLED BY TH
E VALUE'' J G<'. H 1 - 1 >
3070 I F C:C H 1 - 1 > < >-9999 . 9 THEN PRINT • PR I N
T "DO YOU WISH T O REPLACE" J GC H 1 - 1 > , • INPU
T Q 9 • J:F c:i•-"N" THEN GOTO 3000
3090 LET �<'. H 1 - 1 >-V 1
3090 CLS, PRINT Qt "7'*32 , " " J , J:N,-.UT "ANOTHER

'.-'F=ILUE • "� Q• ' IF GJ• - " Y" THEN GOTO 3000
3 1 00 RETIJRt-�

This module accepts data under the headings supplied by the user relating
to the vertical and horizontal axes. If the data input would overwrite an
existing item of data, the user is informed and has the option to cancel the
input.

MODULE 6.5 .7

�000 REM************************
�0 1 0 REM DRAW GRAPH
�020 REM************************
�030 IF CHAR• c 0>- " " THEN CLS• PR J" N T ll! "7'*:3
:Z .• "CHARACTER SET NOT LOADED. " , FOi=<: J- 1 TO

�000 • NEXT • RETURN
�040 GOSU9 4000
�0!50 FOR L-0 TO HOR- 1 • J: F G< L >--9999 . 9 TH
&;N NEXT L• CLS • PR J: NT ll! 7-«:32 � " ************

144

Chapter o Hanay proyr1:1ms

:>t:NO DATA*-*****:tc,.: * * * " , FOR I - 1 TO '!!5000 • NE
XT • R:ETIJRN
'!!5060 LET T•-HO• • LET P 1 -00 • LET P2- 1 02 • GOS
,_,e e000
�07'0 LET T•-vE•-+-" < IJN I T " -+-STR•< :t NT< VV ::,
::, ... •• :::, " • LET P 1 ..-22 LET P:2- 1 • GOSUB 0000

�000 ORFU,J •• BM " -+-STR•< 1 3-+-< L -+- 1 >*L.._. :::>-+-" .. " -+-STR
•< 1. 7'?'-< G< L >-BASE ::,...-vv*LV >
'!!5090 FOR .J-L TO HOR-1
� 1 00 J: F G< .J >< :>-9'9'9 9 . 9' T.._.EN DRAW •• M •• -+-STR•
< J: NT< 1 3-+-< .J-+- 1 >*L.._. ::, > -+- " .. " -+-STR•< I NT< 1 7"7"'-< G< .J
>-BF"ISE ::, vv:>t:LV ::, :::,

':1 1. 1.0 NEXT -'
� 1 20 J: F J: NK;EY•- " " THEN GOTO � 1 20
� 1 3€1 RETURN

Based on the data contained in the array G and the scaling calculated in
Module 4, this module draws a simple line graph onto the axes specified by
the user.

Testing Module 6.5. 7

Lines 5030, 5060 and 507 0 should be edited so that REM is inserted at the
beginning of each. After this you should be able to input specifications and
data and then see a graph drawn onto the axes.

MODULE 6.5.8
0000 REM************************
00 1 0 REM .._. J: GH RESOLUT J: ON TEXT
0020 REM************************
8030 LET GR•- •• F"IBCDEFGH :t .JKLMNOPGIRSTUVW>cYZ

1 234�11!57"090< ::, "
8040 FOR :t - 1 TO LEN < T• >
80�0 FOR .J- 1 TO LEN< GR• >
0011!50 J:F M :t O•< T . .. :t .. 1 :::>-M I O•< GR• .. .J .. t >THEN G
OTO 13090
007'0 NEXT .J
0080 CLS • P'R Y NT "GRAP J: CS SYMBOL NOT CRTE
RED FOR • " .• M :t D•< T • , :t , 1 :::> • FOR .J- 1 TO �000 • N
EXT • STOP
0090 DRRW " BM '' -+-STR•< P' 1 -+-S*< J: -1 ::, >-+- " , " -+-STR•
C P'2 >-+-CHRR•< _,_ 1 :,,
8 1 00 NEXT :I
8 1 1 0 RETURN

Apart from the extra data file requirement, this module is all that is
necessary for practical handling of text in high resolution graphics modes.
The printing of the text is not as fast as normal printing but it is acceptable
for labelling and other limited text purposes. The quality of the lettering
will depend on the quality of what you have created with the high
resolution text programs.

Commentary
Line 8 03 0: This string is a list of text characters in the same order as they are
to be found in the character set contained in the array CHAR$.

Line 8 04 0: T$ is the name of a string which is declared when the module is
called up and which is to be printed.

145

The Working Dragon

Lines 8050-8070: This loop compares letters in T$ with those in GR$ and,
when they are discovered in GR$, executes the DRAWing of the
corresponding character from CHAR$. It does not actually matter that the
characters in GR$ are the same as the characters in CHAR$, as long as the
user knows what the GR$ characters are meant to indicate e.g. if the first
character in CHAR$ were a * then specifying A in T$ would result in the
printing of an asterisk.

Line 8090: PI and P2 are the X and Y co.ordinates to start drawing.

Testing Module 6.5.8

All that should be necessary to unveil high resolution text on your Dragon
is to remove the temporary REMs from the beginning of lines 5030, 5060
and 5070. Note that you must first enter your data and then call up the
character set from tape. In a program with a separate initialisation module,
this would not be necessary, it is just that in this program the variables are
all reset when a new framework is specified for a graph.

Summary
One day there will no doubt be a version of the Dragon which will not need
to go to these ridiculous lengths to provide such a desirable facility as high
resolution text. Even when it comes, however, it will lack something else
that you would have liked to see. Perhaps with applications like this one
behind you, you will be emboldened to believe that if Dragon haven't
provided it there's no reason why you shouldn't do it yourself!

146

CHAPTER 7

Fun and Games

You will, perhaps, already have gathered from the overall form of this
book that I do not consider games the be-all and end-all of home
computing. My suspicion is that games are often the fall-back of those who
have discovered the fascination of computing but not yet explored the ways
in which the power of the micro can enhance their daily living.

Nevertheless, games have their place, depending on the games
themselves. Too many magazines and books contain examples of
extremely boring games which no one would ever think of playing for
pleasure were it not for the fact that they have now been put onto a
computer. Personally, I like computer games that are irritatingly difficult
and that never let you leave the machine with the feeling that you have
absolutely conquered them. Here are three of my favourites.

7.1 TRACKER

This game is infuriating. It will have you questioning the correct
functioning of either the program or of your Dragon in next to no time. So
sure am I of this that I have even included a line in the game which gives
away the answer, so that you can play a couple of times and prove that the
whole thing is working properly!

MODULE 7 . 1 . 1

S000 REM************************001. 0 REM I NSTRUCT I ONS e020 REM************************ 9030 CLS • PR I NT IJ! 1 0 � " :l .,-.st...-uc::t.:l o.,-.s" 9040 PR J'.NT , PRY NT " 'TH :I S :I S R HUNT Y NC GRME
00�0 PR I NT • PR: Y NT •• THE HUNT Y NG GROUND I S PI 1 2 9y·· � ··210 GR I D - " • PR Y NT • PRI NT " THE QUR F:"RY Y S I NV I S I BLE . •• 00'50 PR I NT , PR :t NT •• ERCH TURN� THE QURRRY MAKES R SECRET MOVE . TH I S MOVE DOES NO T CHRNGE OUF:" J: NG R PRR:T Y CULRR: HUNT . " 9070 PR :t NT " THE MOVE CRN BE UP T.O S J: >< SP RCESUP OR DOWN RND S I >< SPRCES LEFT OR RI GHT . " J , J: NPUT •• < •-nt.•..- FOR MORE >" J Q. e0e0 CLS • PRY NT "ERCH TURN CONSYSTS OF • ..
9090 PR I NT • PR I NT .. 1 > RN I N V I TRT I ON TO Y NP U T YOUR EST I MATE O F TME POS I T I ON OF T HE QUARRY . " 0 1. 00 PRJ:NT·• PRY NT 00 2 > AN ' 0' W I LL APPEAR lN YOUR CHOSEN SQUARE . A , _ , J:N AN RD.JACENT SGtURRE W I LL J: N D J: CRTE THE D IRECT :t O N O F THE QURRRV. " 01. 1 0 PR: I NT • PR Y NT " � > THE QUARRY W I LL MOVE . ..
91.20 PRI NT • J: NPUT,..,...,t.- FOR MORE • " ' J GI. 0 1.30 CLS • Pf:;!: I NT " RT THE STRR:T OF EACH TUR

147

The Working Dragon

N YOU HAVE THE OPPORTUNITY TO REVIEW
-r'HE HUNT SO FAR . "
€' 1 40 PRINT • PRINT " THIS IS DONE BY ENTERI
NG ZERO WHEN THE DOWN CO-ORDINATE IS

CALLED FOR . "
9 1 '50 .PRINT • PR I NT " YOU CAN START THE REVI
EW AT ANY PREVIOUS MOVE BUT YOU ARE

L I M I TED TO REV I EL..J I NG 20 MOVES :t NANV ON
E HUNT . "
9 1 60 PRIN T • PRINT "THE 20 REVIEWS CAN BE
TAKEN ALL AT ONCE OR IN BATCHES . " .• • INPUT

.. <e-..... t.e--.- :,, •• ; c,..,
0 1 7'0 RETURN

Instructions for the game.

MODULE 7.1.2
9000 REM************************
90 1 0 REM SET DIFFICUL T Y
9 0 2 0 REM************************
90:30 PPINT "T ERE :tS A D "I FF "I CULTV

BUILT IN,..O THE GAME . "
9040 PR "I N T PR "I NT " TH :t S: CONSISTS: OF A PAN
DOM MOVE OF UP TO '5 DOWN AND S RIGHT

EVERY SO Ol="TEN . YOIJ ARE N O T "I FIEDWHEN A
RANDOM MOVE TF'tKES PLACE . "

90'50 P R "I N T • PR "I NT " THE D "I FF="ICULTY F="ACTOR
PANCES 0 TO 1 0 . "
906""01 P R: "I NT • PRINT " ' 0 ' MEANS NO RANDOM MO
... ,e:s . "
907'0 PRINT , J: NPUT "PLEASE :t NPUT YOUR DESI
REr.-- D T F="F="ICULTV FACTOR , " , E
9090 LET E-< 1 1 -E �*2+2- 1 00*< E-0 > RETURN

This module sets a difficulty factor as explained in the module itself.

MODULE 7.1.3
1 000 REM**********************•**
1 0 1 0 REM I NITIALISE
1020 REM*************************
1 030 CLS • PR J: N T l'lr 9*32-+- 1 2 , " t..-.a_o:::k .-,- "
1 040 PR I N T • INPUT "DO YOU WANT I NSTRIJCT J: 0
NS c v....-N ::>• '' J Gl- · I F Q•- " V " THEN GOSUB 8000
1 0�0 CLS · GOSUB 9000
1 060 DIM M<: 99 � :3 ::>
1 07'0 LET R 1 -7'-RND< 1 3 ::>
1 080 LET R2-7'-RND< 1 :3 ::>
1 090 LET P 1 -RND< 1 2 >
1 1 00 LET P2-RND<30 ::>
j_ 1 1. 0 LET e•- •• " LET T ... -CHR•< 1. �s,, ::>-+-CHR•< 1. 9 1
::>• FOR I- 1 T O l � • LE T e•-e•-+-T- · NEXT
1 1 20 LET c•- " " • LET T•-ct-tR•< 1 9 1 ::>-+-CHR•< 1. '59'
� · FOP. I-1. TO l � • LE T c•-c•-+-T•• NEXT
1 1 30 LET T-0 • LET C t -0

This module sets up the program variables.

Commentary
Lines 1070 - 1080: Rl and R2 are the vertical and horizontal components
of the quarry's secret move each turn.

Lines 1090- 1100 : The vertical and horizontal co-ordinates of the quarry's
initial position.

148

Chapter 7 Fun and Games

Lines 1 1 10-1 120: This sets up two lines of red and yellow chequerboard to
speed later printing.

MODULE 7 . 1 .4

Z000 REM************************
20 1 0 REM :l N :l T :l AL BOARD
2020 REM************************
:2030 CLS
2040 LET A•-"' 1 234!5'5?"890 1 234!56?"890 1 234!5'5?"
090 " • PR :l NT " "> R•
20!50 FOR :t - 1 TO 1 2• PR :l NT � :l *32 � M Y D• < A• #
:t .. 1 ::, • NEXT , GOSUB 4000 • :l F A- 1 THEN RETURN

This module simply prints a grid of numbers on the edge of the
chequerboard (which has not yet been printed).

MODULE 7 . 1 .5

4000 REM************************
40 1 0 REM P R :l NT BOARD AND MOVE
4020 REM************************
4030 FOR r - 1 TO 6 • PR :l NT � < r • 2 - 1 ::>*32+ 1 � B
• • PR :l NT � :l *2*32+ 1 � C•• NEXT :l
4040 FOR :l - 1 3 TO 1 !5 • PR :l NT � :l *3 2 � STR:l NG•
< 3 1 _. " " ::, J • NEXT
40!50 :l F T-0 THEN RETURN
4060 POKE 1 024+32:ot:M 1 +M2 .• ASC< " 0 " ::, • POKE 1 0
24�32•<M 1 -<P 1 >M 1 ::>-<P 1 < M1 ::> ::>+<M2-<P2>MZ >+<
P 2 < M 2 ::, >� ASC< "�" >
40?"0 F'R :tNT l'.!' 1 !5* 3 2 > P1 , " " > F'2 ,
4080 :tF A< > 1 THEN RETURN
4090 RETURN

This module prints the board itself.

Commentary
Line 4060: This line pokes the 0 into the position guessed by the player and,
using the value of conditions, a + in the direction of the quarry. Note the
way the ASC value of a character is poked directly to the screen though
since the chip which controls the display works on a slightly different
character set than the Dragon's Basic the + is inverted.

Line 4070: This line actually tells the player where the quarry was when the
0 + clue was formulated. It should be removed when you begin to play
seriously.

MODULE 7 . l .6

!5000 REM************************
!50 1 0 REM MOVE :I NCREMENT
�020 REM************************
�030 LET P 1 -P J +R 1 • LET P2-P2-R2
�040 :l F T/E- Y NT� T / E ::> TNEN LET P 1 -P 1 +RNO<
� > ..:..��!" �2-P2+RND< ,S ::,, PR :l N T � 1 !5*32, "r-.-.-r,do

,0�0 LET P 1 -P l - 1 2 *C P 1 < J >�· 1 2*< P 1 > 1 2 >
�060 LET P2-P2-30*< P2< 1 >+30*< P 2 > 3 0 �
�0?"0 RETURN

149

The Working Dragon

This module adds the secret move and calculates whether the quarry has
moved off one side of the board or the other. Depending on the difficulty
factor, the module also assesses whether it is time for a random move.

MODULE 7 . 1.7
3 0 0 0 REM************************
30 1 0 ,=:,:EM INPUT RND D :I RECT J: ONS
3020 REM************************
3030 LET T-T- 1 • :l F T > 1 00 THEN CLS• PR J:NT m

7'*32, • ' SORRY-CAN ' T TRKE RNY MORE MOVES � "
.• , " YOU ' RE JUST SO BRD I T ' S P R :I NFUL ! •• • END
3040 LET r.:i•-" "
30!!50 LET M•- " MOVE • . -sTR•< T > • FO,=> r- 1 TO LE
N' M9> • PRJ:NT � < J: -Z >*32+3 1 , M J: D•< M ... J: , 1 > , •
NEXT
3060 PRINT al! 1 !!5*:32+ 1 !!5 , ''<' 0 ' FOR REVIEW > "

3070 PR J: NT IP 1 3*:32 ., "" • • J: NPUT "DOWN • " , M 1
:::'1000 J:F M l. > 1 2 OR M 1 <: 0 THEN P,=:,.: I NT " >OUT OF

RANGE", PR :I NT Qt 1 3*32 ., "" • GOTO 30�0
3090 IF M 1 -0 THEN GOSUB 7000 • GOTO 30!50
3 1 00 F"R J: NT 1:¥ 1 !!5* 31 2 , STRX NG•< 31 .. " " ::,, ,
3 1 1 0 PR J: NT llt 1 4*32 ., " " ., • INPIJT "ACROSS • " J M

; 1 20 t: F M2>30 OR M2< 1 THEN PRt:NT " >OUT 0
F RANGE " ., • PR J: NT 1:2 1 4*32, " " , GOTO 3 1 1 0
3 1 30 PR X NT llt 1 !!5*32, STRING•< 3 1 , " " > •
3 1 40 IF M 1 -P 1 AND M2-P2 THEN GOTO 6000
3 1 !!50 LET M<T- 1 , 0 >-M 1 • LET M< T- 1 , 1 >-M2
3 1 60 LET M< T - 1 , Z >-P l • LET M< T- 1 ,3 >-P2
3 1 70 GOSUB 4000 • GOSUB !!5000 • GOTO 3030

This module accepts the player's guess as to the current position of the
quarry and stores it, together with the quarry's co-ordinates, in the array
M. It obviously also checks to determine whether the player has actually
caught the quarry.

MODULE 7.1.8

6000 REM************************
6 0 1 0 REM SUCCESS AT LAST
6020 REM************************
6030 PRINT I:!! 7*32, STRING•< 3 1 , " " ::,, , , PRINT

T
@ 7*32+ 1 0 , ''GOT I T ! '' • FOR I - 1 TO !!5000• NEX

6040 PR l" NT l'..e 7:,1,:32+6 _. " " _, • "I NPUT "ANOTHER G
FtME <Y_..-N ::, " • 0!!11• :tF Q,__ "Y " THEN GOTO 1 070
,f:0�0 END

This module informs the player that the game is won and allows a restart if
desired.

MODULE 7. 1.9
7000 REM************************
70 1 0 REM REVYEW OF GAME
7020 REM************************
7030 LET Ft- 1 • T F C1 >20 THEN GOTO 7 1 1 0
?"040 CLS,PR I N T (2 4*32- 1 0 > ".-e-ve- 1 -...• "
70�0 PR :tNT , PR Y NT "RE V Y E l.J ALLOWANCE 20 MO
• .. ,ES . "
7060 PR X NT , PR Y NT " YOU HAVE USED " � Cl
7070 PP :t NT , PR J NT "LAST MOVE WAS t-,o_ " J M "I D
1"< STR91< T ::,_. 2 ::,
7000 PRINT · X NPIJT " "I NPUT F YRST MOVE FOR R
E V T E W • " ; T 1
7090 CLS
7100 FOP J-T t - t TO T-Z • LET c 1 -c 1 + 1
71 1 0 IF C 1 >:20 THEN CLS • PRINT 11!! 1 0*32-4,"

1 50

Chapter 7 run and Ciames

r•v i -� � i Qht• -xh«u�t•d''• FOR 1 - 1 TO 3000
• NEXT • GOTO 7' 1 90

7' 1 20 LET M 1 -M< .J,0>• LET M2-M< .J,1 > • LET P 1 -
M< J , 2 > • LET P2-MC J,3 >
7" i. 30 ,:;;os,_19 2000
7" 1 40 PR J: NT 11! 1 3*32," REVJ:EW OF MOVE" ; .J-+ 1
7" 1 �0 IF C .J-+ 1 >/E - J NTC C .J -+ 1 >/E > THEN PR J: NT
ol'! 1 :5*32 , "�.a,.ndo-M MQV- -F" o- 1 1. c.,...,•d" J
7 1. "60 PR I NT 11! 1 4*32 , "" , • J: NPUT " -.nt.e-�-NE><T

MOVE// ' 0 · -QU Y T • "• , Q•
7" 17'0 FOR I - 1 3 TO 1 � , PR J: N T � 1 *32,STR J: NC•
C 3 1 . " " >, , NE:W:T
7" 1 80 J:F �•< > "' 0 '' THEN NEXT J
7 1 90 LET M 1 -MC T -2 , 0 >• LET M2-MC T-2, 1 > • LET

P l -MC T-2 . 2: > • L ET P2-M< T-2:,3 >
7200 GOSU9 :2000 • LET A-0 • RETURN

This is the module which allows the player to review previous moves. It
uses previous modules to draw the board but sets the indicator variable A
to zero so that moves will not be input.

Going Further
I) One definite improvement would be a facility which, at the end of the
game - either successful or otherwise, allowed the player not only to
review the moves made but also to see the actual position of the quarry.
Since this information is stored in the array M, there should be little
difficulty in adding such a module.

7.2 HEADLONG

If you thought that one was bad enough, this one is absolutely impossible
- at least on the higher levels of difficulty. The object of the game is to
steer a moving dot around a cluttered screen without crashing into
anything, including the trail left by the dot itself. As an added incentive
there is a large white block which rushes across the screen mindlessly and if
it collides with you then that is the end of the game. The basis of the game is
the Doodle program you were given earlier and two versions are given -
one for joysticks (which is the better of the two) and one using only the
arrowed keys.

MODULE 7.2.1

1 000 REM************************
1 0 1 0 REM T N T T J: A L J: SE
1 020 REM************************
:l 030 CLS• J NPUT "PLEASE J: NPUT O J: FF J: CULTY
LEVEL FROM 1 TO 1.0• " ; 0 J: FF
1 040 LET P 1 - 1 00 • LET P2- 1 00
:t. 0�0 PMOOE 0 .• 1 , PCLS3 • SCREEN 1 . . • 1.
:t. 060 O J: M GO:: 1 � . 1 !5 >, HC 1 !5 . 1 !5 >
1 070 GET C 0,0 >-C 1 � > 1 � >,G > G
1 013:0 PCLS
1 090 DR'"'l-l " BM 0 > 0 ; R2�!5, 0 1 9 1 , L2:5:5 J IJ 1 9 1 "
1. 1 00 DRF::U,J "BM20 , 0 , 0 1 00 "
:l 1 1 0 DRAW ''BM:50 � :l 9 1 J U?!5 ''
1 1 20 ORAL.J "BM0 > 150 .• R 1 !5"
1. 1 :30 OR!AL..J " 'E'IMl2.I ., 1 2 0 ; R40"
1 1 40 DRAW ''BM2!5� ., 97 .• L100"
:l 1. "=50 ORAL.J ' ' 9M7''!5, 1 !50 .• E 1 00 "
1 1 .S0 DRAL,I ""BM 1 2 :5 , 1 9 1 • IJ7'!5"'
1 1 7'0 DRAl·l " BM".310, 40J R 1 20"
1 1. 80 DRF::U,I •• BM:200 • 0 J 090"
:l 1 90 DRAW " BM 220 .. 1 9 1 • U'90"
1.201'.?1 DPAI..J " 9M 140, 1 :50 ., R,S!!!!i"'
1. 2 1 0 LET sc-0

151

I he Working Uragon

Sets up program variables and draws obstacles on the screen. The moving
block is taken, using GET, from the empty screen in line 1070 and stored in
the array G.

MODULE 7.2.2 (Joystick Version)
Z000 REM************************
2010 PEM E><ECt.JTE DRAWING
2020 REM************************
2030 LET x-2 , LeT v-2
�040 FOR :C -0 T O 3 • LET J< :C >-JOYSTK< J: > • NEX

Z0�0 LET x1-x LET v1-v
2060 LET ><-X-2*<J<2>>63- D J: FF*3>-2*<J< 2><
o-c :r: FF:it'3 ,.
::��F��; ,

v-Y-2*< J� 3 > >63-DIFF*3 >-2*< J< 3 ><

2080 J:F P1'240 THEN LET P1-0
2090 J:F P2�1?6 THEN LET P2:-0
2100 GET ' P1 , P2)-C P1-1�,P2-1�) . H , G • PUT< P
1 , P2 >- C P 1 -1�,P2:-1�>,G · PSET
2110 REMFOR :C -1 TO � · NEXT
2120 IF X1< >X OR Y1< >Y THEN J:F PPO I NT < X ,
V >< >0 THEN GOTO 2230
2130 TF X1< �X OR Y1< >Y THEN LET sc-sc-1
21�0 PUT < P t , P2 >-C P1-1�, P2-1� > , H , PSET
2 1 �0 LET P1-P1-0 • LET P2-P2-0
2160 PSETC �,Y , � >
2190 GOTO 2040

Most of the module will be familiar from the Doodle program.

Commentary
Line 2050 : These variables are used to determine whether the user's dot has
moved in this pass through the module (keeping the joystick straight allows
the dot to be stationary). If the dot has not moved then no attempt is made
to see whether there is an obstacle where the dot is about to be printed.

Lines 2080 - 2 110: These lines move the white block across the screen
diagonally.

Line 2 130: If the screen point where the dot is about to be printed is set then
the game ends.

MODULE 7. 2.3
:Z:2:00
:2210
:2220

��::;iii

REM************************
REM GAME ENDS
REM************************
CLS , PR I N T ,:e ?*32-10 .- " SCORE-" J SC• PR ::C
8*32-10, " D ::C FF ::C CUL TY-" _, D :t FI=" • END

Confirms the end of the game and gives the score.

ALTERNATIVE MODULE 7 .2.2 (Non-Joystick Version)
:2000
:2010
:2020
:20:30

=�:
0

152

REM************************
REM E�ECUTE DRAW ::C NG
REM************************
LET x-2 · LET v-2• LET 02-�0-D J:FF*�
LET T• - r NKEY• • :t F T• < >"" THEN LET o•

Chapter 7 Fun and Games

2060 LET �-X-2*< D•-cHR•< 9 > �-2*< D•-cHR•< e
»
2070 LET v-V-2*< D•-cHR•< 1 0 > >-2•< 0•-cHR•<
94 > >
207� FOR 1 -1 TO 02: • NE�T
2090 IF P , >240 THEN LET P1-0
2090 IF P2>176 THEN LET P2-0
2 1 00 GET C P 1 , P2 >-< P1-1 �,P2-1� > , H,G • PUT< P
1 . P2 >-<P1-1�,P2- 1 � > , G , PSET
2120 IF PPO I N T< X , V >< >0 THEN GOTO 2230
2 1 30 LET sc-sc-1
2140 PUT < P1 , P2 >-< P1-1�,P2-1� > , H , PSET
21�0 LET P1-P1+0 • LET P2-P2-e
2160 PSET< X,Y,3 >
2 1 90 GOTO 2040

Joystick functions are here replaced with INKEY$. The dot is never
stationary but continues moving until a new direction is input at one of the
arrowed keys.

Going Further
Enjoyable though it certainly is, the simple structure of this game gives
ample scope for all kinds of added features - not the least of which might
be a two player version.

7.3 QUOITS
A game of judgment and reactions and also a program that well displays
some of the strengths and weaknesses of the GET and PUT commands.

MODULE 7. 3. 1
9000 REM************************
90 1 0 REM I NSTRUCTI ONS
9020 REM************************
9030 CLS • PR I NT ""YOU ARE I N V T: TED TO ..JO I N
A GAME O F THREE D I MENS I ONAL CIUO I TS . ••
9040 P R I N T , P R T N T " I T ' S CALLED THREE D I ME
NS T ONAL BECAUSE THE QUO I T S HAVE TO BE

"'T"HROL.JM FROM A H E I GHT ONTO PEDEST
ALS THAT VAR'!Y :l t-{ HE :t GHT FROM ONE TO F I
VE FEET . ••
90�0 PR I NT • PR I NT " VOU HAVE FOIJRTY GILIO :I TS

AND VOUR OBJECT I S TO GET ONTO AS MANY
OFTME LOL-J PEDESTALS AS POSS I BLE . "
9060 PR :t NT · I NPUT " < •-nt.�.- > TO CON T I NUE • " � """
9070 CLS • PR I NT " THE HE :t GHT OF THE PEDEST
ALS I S :t N O :t CATED ev A NUMBER AS ON THE
F="ACE OF A D I CE . "
9000 PR I NT • PR I NT " EACH T :I ME YOU LAND ON
A PEDESTALVOU SCORE S I >< M I NUS THE HE I GHT
--PROVYDED THAT YOU HAVEN ' T H I T THAT 0
NE BEF='ORE . "
9090 P R I N T • PR Y NT "'THE GAME I S ENT I RELY l.J
f_ THOUT TEXT. YOIJR ONLY A I OS ARE TWO

J. NS TRUMENT D T 'SPLAYS . "
9 1- 00 PR I NT , I NPUT " ' < .--nt.•.- > TO CON T I NUE • " ,
.,.
9 1 1 0 CLS • PR :t NT " THE F I RS T I N S T RUMENT I S
A L I NE WH I CH RACES ROUND THE SQUARE ON
l.JH T CH VOU PLAY. PRESS I HG A KEV W :l LL STO
P I T AND 1.JHEREVER I T STOPS, THAT IS T
HE D :t RECT :t ON IN l.JH I CH YOUR QUO I T W :t LL TR
AVEL YOUR PLATF="ORM IN THE CENTRE OF
C:R I D . ••
9120 P R I N T , P R :t N T '' THE SECOND I NSTRUMENT
1:S A POL-JER I N D T CPITOR. IT l:S ALSO A L I NE B

UTf=4CROSS THE TOP OF=" "'T"HE SCREEN . THE FU
RTHER VO!_! LET l: T GO .. THE HARDER VOUR TH
ROW . "
9 1 :30 I NPI_IT "< -Y'lt..-,.... > TO CONT I NUE • •• ., Q•
9 1. 40 CLS , F"R I N T "AFTER VOUR H ... VE THROWN

153

The Working Dragon

-f"HE C!UOITIT �T-='1"11:TS TO F A L L . VOU CAN TRAC
K 1 TS FALL ON THE HEIGHT LINE AT THE RIG
HT OF THE SCREEN--IT ALSOINOICATES THE H
EIGHTS OF THE F l VE TVPES OF PEOESTAL .

9 1 !50 P'R '.I NT • PR l NT "IF IT ' S TOO LOW WHEN :r
-f" GETS TO A PEOESTAL . THE QUOIT IS WASTE
o . ..
9 1 '60 PRINT • '.I NPI_IT " C -e-Y"tt@"!"r- > TO CONTINUE• " >
., ..
9 1 7"0 CLS , PR l: NT ''ONE F"" l: NA L PR08LEM . YOUR
P'LATF0"11:M Y S CONSTANTLY DESCEND Y NG, MAK 'I NG
IT INCREAS I NG L Y DIFFICULT TO HITTHE LOWE

R PEDESTALS. GOOD LUCK"
9 1 80 PRINT • 1 NP'UT "<' @"!"Y"tte-r- > TO STRRT• " .• Cl•
9 1 9'0 RETURN

Instructions for the game.

MODULE 7.3. 2
:2:000 REM************************
:2:0 1 0 REM INITIAL I SE
2020 REM************************
2030 CLEAR • �CLEAR4
2040 D I M A< 8, 1 0 >
20�0 FOR 1 -0 TO 8• FOR J-0 TO 1 0
2060 LET A< I , J >-RND< � >
:2:07'0 NEXT J ., l
2000 LET �2-6 • LET V2-!5
:2:09'0 LET SCORE-0 • LET R< 4 .• !5 >-0
:2: 1 00 GOTO 1 060

This module sets up the program variables, especially the values in the
array A which determine the heights of the pedestals.

MODULE 7. 3.3
'6000 REM************************
60 1 0 REM C H I MNEY SQUARES
'6020 REM************************
6030 PCLS• P'MODE4
6040 D 'I M B 1 < 1 !5, 1 !5 > • D 'I M B2< 1 !5, 1 !5 >• 0 'I M B3<
1 :5 , 1 !5 >, O X M E't4< 1 !5, 1� > , O :I M B:5< 1 !5 , 1 !5 >
60!50 DIM B•< 3 > • LET A•- ··BM 1 , 1 J R 1 !5 J 0 1 !5 J L 1 !5
, 1J 1 !5 J ..

�060 LET e•c 1 >-A••·· eR7" J B07" J R 1 , D 1 J L 1 "'
607"0 LET e•<2 >-A•• ' ' BR3 J E't03 J R 1 ; 0 1 J L 1 J B0?' J
8R8; R 1 ; 0 1 J L 1 "
6080 LET e • c 3 >-A••"BRt 1 ., B03 J R t > 0 1 , L t J BO?'
., BLS ., R t ., 0 1 ; L 1 "
6090 DRAW e•< t > • GET < t . 1 >-< 1 6 , 1 6 > . e t . G
6 1 00 DRAa..J e•< 2 > , GET < 1 , 1 >-< 1 6 > 1 6 >, 8 3 , G
6 1 1 0 DP.AW e•C 3 > • GET < t , t >-C 1 6 , 1 6 >,B!5 , G
6 1 20 PCLS • DRAW e•<:Z > • GET C 1 , 1 >-C 1 6 , 1 6 >,B
2 , c;;
S 1 30 ORAW B•< 3 > • GET < 1 , 1 >-< 1 6 , 1 6 > . 84,G
6 1 40 RETUP.N

Using DRAW instructions which provide a 1,2 and 3 this module DRAWs
the five dice faces and then GETs them into the 5 arrays B1·85.
Unfortunately a three·dimensional array such as 8(4, 15 , 15) cannot be
used since GET and PUT will not work with such an array.

MODULE 7. 3. 4

?'000 REM************************
70 1 0 REM P � l: N T CHI MNEYS
7020 REM************************
7030 PMODE4• PCLS • SCREEN 1 , 1

154

7040 FOR Y -24 TO 1 !52 STEP 1 6 • FOR .J-�2 TO
j. 9':2: STEP :1 11!5

70!50 Y F r -ee AND .J-ee TMEN GOTO ?090
7060 LET Y :l -< Y -:2:4 >/ :l 6 • LET .J :l -< J-32 >/ :1 6
::�� :l �= , ;�:�A< Y :l , ...J :l > > COSUB ? :1 40 , ? :1 �0 , 7 :1

7080 Y F A< Y :l , ...J :l >< 0 TMEN PUT< ...J , Y >-< ...J + :1 !5 , Y
+ :l !!'i -.. , B l , NOT
7090 NEXT ...J , Y
7 :1 00 DRAW " EIM:2!50 , :1 :9 :l " • FOR Y - :l TO 6 , OR:AW "
R!5 > U :l ; L !!'- J BM+0 , - 1 0 '' • NE><T Y
?" :l :1 0 DRAW " EIM!5 , 1 86 " • FOR Y - 1 TO < M- :1 00 >/!5
+:3-C , DRF:U•J " D 2 ; R2 J U :2 ; L2BM+!5 , +0 '' • NE><T Y
7 1 20 DRAW " BM0, 0 .• D!!5 .• R1 J Ll!5 .• EIM:2:40 , 0 > 0!5 , R :l ,
1_1 !5 "
7 :1 30 RETUP.N
7 :1 40 PUT< _1 , Y >-< _1+ 1 !5 , Y + :1 !5 >, B :l . PSET • RETURN
71 !50 PUT< -' ·· J: >-< ...J+ :1 !5 , Y + :1 !5 > , B:2:, PSET • RETIJRN
7 :1 60 PUT"'. _1 , Y >-< _1+1 !5, Y+ 1 !5 >, 83 , PSET • RETURN
7 1 ?"1121 PUT< .J, Y :>-< .J+ :1 !5 , :t + :1 !5 :>, 94 , PSET • RETURN
7 1 00 PUT< _ 1 . :r >-r .J+ :1 !5 , l: + 1 !5 >, 8!5, PSET • RETURN

This module DRAWs the display on which the game is played.

Commentary

Lines 7 04 0-7 09 0: These loops work through the array A, using the values
contained in it to call up the one line sub-routines at line 7 140-7 18 0.
Line 7 100: This draws the marks which indicate the height of the pedestals
on the right of the screen.

Line 7110: The remaining quoits are displayed visually at the bottom of the
screen.

Testing Module 7.3.4

Temporarily removing line 1060 and line 614 0 should result in a program
which will create the display described, before giving an error RETURN
WITHOUT GOSUB.

MODULE 7.3.5
j. 000 REM************************
1 0 1 0 REM MA Y N PROGRAMME
:1 0:2:0 REM************************
1 030 CLS • PR I NT t::e 2*�:2:+ 1 :2: , " q uo i t. :& "
:1 040 PR Y NT • X NPUT " 0 0 Y O U WANT :t NSTRUCT :t O

N S < V/N), • " J c:!• • :t F Q•- " V " TMEN GOSUB 9'000
:1 0!50 CLS • GOTO 2000
1 060 c;;osue s000
1 0?0 FOR M-300 TO 1 00 STEP - 1 0 • FOR G- 1 T
0 Z
1 080 GOSUB ?000 • GOSIJB 3000
1 090 Y F Y NKEV•- " • • TMEN GOTO 1 09'0
1. 1 00 CLS • NEXT G , M
:1 :l :1 0 CLS • P R Y NT QI! :2:)t:32+ :1 2 .. " CIUO X TS "
:1 :l :2 0 P R Y NT • F" R Y N T " YOUR SCORE ��AS " . • SCORE
• END

The main loop of the program, which allocates work among the other
modules.

MODULE 7.3.6
3000 REM************************
�0 1 0 REM D Y RECTXON
3020 REM************************
�030 PMOOE 4 • SCREEN 1 � ,

155

::3040
30'50
:'c't060
'.307"0
::300112'1
'.3090
'.3 1 00
:'c't 1 1 0
3 1 20

�!J�
::3 1 '50
3 1 60
� 1 -:"0
3 1 80
3 1 90
?200

LET S 1 - 1 1 9 • LET 82-96
LET x- 1 s • FOR Y- 1 7'5 TO
PSET < X .. Y >
T F Y NKEY•< >" " THEN
NEXT Y
FOR X- 1 6 T C'l 222
PSET < X. Y >
t: F J:NKEY• < > " " THEN
NEXT X
FOR Y- 1 6 TO 1 74
PS:ET < X .. Y >
Y F J: NKEY•< >" " THEN
NEXT Y
FOR X-223 TO 1 6 STEP - 1
PSET <x , y ::,
:C F I N K EY!II< > " " THEN GOTO
NEXT X

This module draws the direction indicator line around the screen. Stopping
it supplies two co-ordinates, X and Y to the next module.

MODULE 7.3.7
4000 REM************************
4 0 1 0 REM ANGLE AND VELOC I TY
4020 REM************************
4030 FOR I - 1 T O �00 • NEXT I
4040 H 1 -x-s 1 , v 1 -v-s2
40�0 I F ABS o::: v 1 ::- >-ABS< H 1 > THEN LET v:2-sc
N<V 1 > • LE T H2-ABS< H 1 /V 1 >*SGN< H 1 >
4060 IF ABS< H 1 > >ABS<V 1 > TH�N LET H2-SGN<
H 1 >• LET V2-ABS<V 1 /H 1 >*SGN<V 1 >
4070 FOR v-e TO 240
4080 PSET <V, 3 > • :C F I NKEY•< > ' ' '' THEN GOTO
�000
4090 NEXT V
4 1 00 RETURN

Based on the co-ordinates at which the direction indicator stopped, this
module calculates a direction for the throw from the centre of the grid.

Commentary
Lines 4 05 0-406 0: These two lines serve to ensure that the path of the quoit,
when it is plotted on the grid, will be a continuous line rather than spaced
pixels. It does this by determining which is the greater, the horizontal or the
vertical component of the direction and then using that component as the
basis for the line, with adjustments up, down, left or right for the other
component.

Lines 407 0-4 09 0: This draws the strength indicator.

MODULE 7. 3.8
�000 REM************************
�0 1 0 REM PLOT COURSE
�020 REM************************
�030 LET T-<2��-V >/ 1 000
�040 FOR T - 1 TO 1 00
�0'50 LET x - I NT< S 1 + I NT< X *H2> > • LET v- J: NT<S
:2-+- l" NT < X *V:2 > >
�060 :C F Y < 0 OR Y > 1 9 1 THEN RETURN
�070 :r F PPO I NT< X _. Y ::>< >0 THEN PRESET< X • Y :::,
ELSE PSET< X _. Y ;>
�000 GOSUB 8000
�090 LET H3-H-�*-< T* I >-2 • I F H3<-0 THEN RE
TURM
� 1 00 :CF x 1 -x:2 AND v 1 -v2 AND X 1 < >999 AND
Y 1 < >999 THEN TF H3< ABS< AC Y 1 ,X 1 > >*20 AND

156

Ac v 1 . x 1 � � � THEN LET SCORE-SCORE+6-AC V 1 � x
! > • LET A C V 1 � X t >-AC V 1 . X 1 >* - 1
� 1 1 0 T F X1< >999 A N O V t < >999 THEN X F H3<A
esr A� V1 . X t >>*20 THEN RETURN
� 1 20 LET v2-v 1 · LET x2-x 1
� 1 30 TF H3/2< - t 9 1 THEN L T NEC 2�2 . 0 >-C 2�2�
1 9 1 - r H3/2>> , PSET
� 1 40 NEXT T · RETURN

This module calculates the track of the quoit across the grid and the height
of the quoit as it falls.

Commentary

Line 5070: The pixel over which the quoit is currently passing is reversed,
no matter whether set or not.

Line 5090: This formula describes a falling trajectory.

Line 5 100: This line ensures that if the quoit enters a square for which it
does not have sufficient height, it is not registered as a landing, nor if the
square has been landed on before - only if it is a fresh square and it is
entered from above is a landing registered.

Line 5 130: This line draws the height indicator - a downward line, on the
right of the screen.

MODULE 7. 3.9
8000 REM************************
80 1 0 REM LAND T NG7
8020 REM************************
e0�0 LET x 1 - X NT C C X- 3 1 >/ 1 6 >
0040 LET V t - X NTC C Y-23 >/ 1 6 >
e0�0 T F x 1 > 1 0 OR X t < 0 THEN LET X t -999
0060 TF V t >e OR V 1 < 0 THEN LET V ! -999
E:!10?'0 RETURN

This module transforms the pixel co-ordinates of the quoit into
co-ordinates on the 11 •9 grid. If the quoit has passed beyond the grid the
value of the relevant co-ordinate is set to 999 as an indicator for the
previous module.

157

POSTWORD

I hope that i t has not escaped your notice, now that you have come to the
end of this book, that you are the possessor of a library of programs. True,
it is not the most extensive library in the history of computing, but it
contains the tools to tackle a variety of tasks if you are prepared to adapt
the programs to your own specific needs. In addition the collection as a
whole may have given you a glimpse of what the Dragon is waiting to
achieve with and for you.

Like the simplest camera, the meanest computer is far better than its
programmers, always capable of more than has yet been done with it. The
Dragon is a highly powered tool and it waits only for you to take programs
like these and make them your own, cannibalise them for spares, discard
them on the path to better things.

In other words the Dragon waits only to be put to work.

158

	1
	lc-p001
	lc-p002
	lc-p003
	lc-p005
	lc-p006
	lc-p007
	lc-p008
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p066
	lc-p067
	lc-p068
	lc-p069
	lc-p070
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p084
	lc-p085
	lc-p086
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p096
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p108
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	lc-p137
	lc-p138
	lc-p139
	lc-p140
	lc-p141
	lc-p142
	lc-p143
	lc-p144
	lc-p145
	lc-p146
	lc-p147
	lc-p148
	lc-p149
	lc-p150
	lc-p151
	lc-p152
	lc-p153
	lc-p154
	lc-p155
	lc-p156
	lc-p157
	lc-p158
	z

