TheWorking

Dragon 32

TheWorking

Dragon 32

A library of practical
subroutines and programs

David Lawrence

First published 1983 by:
Sunshine Books Ltd.,
Hobhouse Court,

19 Whitcomb Street,
London WC2 7HF

Copyright © David Lawrence
ISBN 0946408 01 7

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording and/or
otherwise, without the prior written permission of the Publishers.

Cover designed by Three’s Company.

Photograph of the Dragon 32 kindly supplied by Dragon Data Ltd.
Typeset and printed in England by Commercial Colour Press,
London E7.

2

CONTENTS

Enter the Dragon

Storing and Searching
Unifile I
Unifile IT

2 Managing your money
Banker
Accountant
Budget

3 Drawing on the Dragon
Artist
Doodle
Tangrams
Designer

4 Easy Education
MultiQ
Words
Where?

5 High Resolution Text
Characters
Dictionary

6 Handy programs
Name and number
Typist
Texted
Music
Graph

7 Fun and games
Tracker
Headlong
Quoits

Postword

Page
5

31
38
46

61
70
74
80

88
95
100

105
119

121
126
128
134
141

147
151
153

158

Contents in detail

CHAPTER 1

Storing and searching

1.1 Unifile I — this is a flexible program which allows you to store up to
500entries with a regular structure of items such as name, address etc. You
can search for named items, amend or delete entries and recall them
quickly and easily.

1.2 Unifile II — this program is designed to cope with less structured files.
You can conduct a multiple search, and amend, delete or insert new items.

CHAPTER 2

Managing your money

2.1 Banker — this program allows you to keep your financial recordsin
much the same form as your bank statement. We also make use of our first
multi-statement lines.

2.2 Accountant — this simple program helps you display your accounts
clearly and easily.

2.3 Budget — a powerful tool which lets you plan your finances over a 12
month period.

CHAPTER 3

Drawing on the Dragon

3.1 Artist — this makes use of the Dragon’sexcellent graphics capabilities
to draw multi-coloured pictures.

3.2 Doodle — with your joysticks.

3.3 Tangrams — this program introduces the useful DRAW command to
build up the shapes in this ancient Chinese game.

3.4 Designer — allows you to define a design of up to 10,000*10,000
pixels, examine it at various scales and rotate all or part of it on the screen.

CHAPTER 4

Easy Education

4.1 MultiQ — this program enables you to input a series of questions and
answers which form the basis for multiple choice tests.

4.2 Words — here thequestionstake the form of simplepictures. Based on
the Artist program it could serve as a reading tutor with a potential
vocabulary of 100 words.

4.3 Where? — this uncomplicated program tests your knowledge of
geography.

The Working Dragon

CHAPTER S

High resolution text

5.1 Characters — this chapter looks at the problem of mixing text and high
resolution graphics on the screen at the same time. The program enables
you to build up any character capable of being fitted into an area on the
screen of 32*32 pixels.

5.2 Dictionary — allows you to store up to 100 of your newly created
characters at one time so as to provide material for high resolution
programs which require text.

CHAPTER 6

Handy programs

6.1 Name and number — a general purpose tool to build up a dictionary of
items and their related quantities, for example, in counting your calories.
6.2 Typist — not every program needs to be hundreds of lines long. This
one helps you to learn to touch type.

6.3 Texted — a useful word-processing package.

6.4 Music — this introduces the Help function and makes use of the
PLAY command to edit music.

6.5 Graph — this program enables the user to draw line graphs of a variety
of data, specifying the units and the set-up of the axes.

CHAPTER 7

Fun and games

7.1 Tracker — aninfuriating gamein which you hunt an invisible quarry.
7.2 Headlong — almostimpossibleto win, this is a fast skilful game based
on the Doodle program.

7.3 Quoits — how fine is your judgment?

Enter the Dragon

This book, and the series of which it forms a part, was undertaken to
try and fill a huge gap. That gap was the absence of works aimed at
fulfilling the new micro- owner’s dream that his or her machine will not
simply be a toy, nor even an educational introduction to the silicon age,
but a powerful tool, taking over all kinds of tasks and opening up all
kinds of possibilities. The majority of books consist either of trivia or
assume too great a desire — perhaps even the capacity — to
experiment.

1 wanted to write a book based on a solid collection of programs in
such areas as data storage, finance, graphics, music, household
management and education. Discussion of programming techniques
would arise out of the programs themselves rather than as part of a
curriculum of ‘things that should be learned’. I hope that you will find
that the book that has emerged from that desire is a useful one, not
only as a way of learning new programming techniques but also as a
collection of programs in itself, offering a wide range of applications
that might otherwise. have been open only to those prepared to buy
expensive commercial software or able to write substantial programs
themselves early on in their programming experience.

In addition to the programs there are the parts of the programs —
not as silly as it sounds, for all the programs in this book are written in
‘modular’ form. That is to say that they are made up of clearly
identifiable functional units which, as you come to understand them,
you will be able to lift out and employ for your own purposes.

Each module is fully commented upon where it covers new ground
and instructions are given for the testing of programs at each stage of
their entry.

In using this book you will find that, though there are sections where
general issues are discussed, it is not a book to be read but to be used.
The relevance of comments and advice will often only be apparent
when you have taken the plunge and begun the task of entering what
appear at first to be dauntingly long and complex programs. Here the
modular approach will help to prevent programs becoming
unredeemable tangles of errors, so do take the tests suggested seriously.

7

The Working Dragon

In the end, however, the success of failure of this book must be judged
on whether it helps you to enjoy your Dragon. Whilst the structure of this
book is closely modelled on my earlier book, The Working Spectrum, the
programs have been revised extensively in the light of the Dragon’s very
different capabilities. 1 have enjoyed the writing of these programs —
enjoyed the sensation that has come very often in the writing of this book
that the Dragon has produced better programs for me than other micros I
have worked with. It is an idiosyncratic machine, sometimes a downright
irritating one but its capabilties go far beyond many others and, I suspect,
far beyond the realisation of many of its owners.

Notes on style

1) Because multi-statement lines are difficult to debug, the early programs
in this book, by and large, avoid their use. If you feel confident of your
own ability there is no reason why you should not merge lines. This does
mean that extra care should be taken in testing modules.

2) I have adopted no short cuts when it comes to spelling out Basic
statements. You may well wish to omit LETs from statement lines or
replace PRINT with 2.

3) The printer on which these programs were listed has replaced all
occurrences of # with £, a fact of which you will need to be aware.

PROGRAM NOTES

There are two points to note with the listings:

1) The # symbol is always represented byﬂ£.

2) The | symbol is always represented by -

3) Inverse characters appear in the program printouts in lower case.

CHAPTER 1
Storing and Searching

1.1 UNIFILE1

Sooner or later, most micro owners realize that their new digital friend
really comes into its own when it is storing information, processing it and
presenting it in ways that would be laborious in the extreme if done
manually. They then begin the task of writing simple programs which will
store their friends’ names and addresses or catalogue their stamp albums.
They may end up with half a dozen programs, each limited to one use but
each working on much the same method.

In this opening chapter we jump in at the deep end and examine how a
single program can be written to satisfy a wide variety of different filing
tasks, without the need for constant rewriting every time a new application
comes along.

The program is called Unifile and it is capable of flexibly storing up to
500 entries, as well as allowing the user to search through them for named
items, to change entries and to delete them. Quite apart from the wide
applications of the program, however, in building it up we shall learn a
great deal about the Dragon’s considerable abilities as a working member
of the family.

MODULE I.1.1

3
E “UNIFILE"™ SOUND 1.1:STOP

I think it’s worth mentioning that all of my programs begin with these three
lines (though obviously the program name changes). Typing GOTO2 is a
great deal easier than spelling out the program name every time and a lot
less prone to error. The result is that you will be more likely to save the
program on tape regularly as you build it up and the result of that will be to
save youalot of frustration when you one day accidentally lose the last two
hours hard work as aresult of mishap or stupidity. Alwaysenter these three
lines first and then save the program regularly as you enter it.

MODULE 1.1.2

13
1020 AR A S ———

The Working Dragon

1223 CLS:PRINT ® 9. QTPIN!-.(S» 142>

12 PRINT @ 41 .CHRSC 128>+ "UNIFILE"+CHRS
1

1o RINGSCS, 13

12 COMMANDS RVF!II_HEL i
12 g 152ET UP NEH FILE
12 PRINT 23ENTER INFORMATION'
12952 PRINT 3 O>SEARCH-DISPLAY.-CHANGE "
112 PRINT * <4 >DATA FILES"

11122 PRINT

1129 PRINT

uh

1138 cLs

114 N =

112 GOTO

1172 PRINT @ 252.STRING®CZ22. 142>

1122 PRIMT @ 252.CHR®< 122>+ FILING SYSTE
M CLOSED" +CHR®C 122>

1192 PRINT ® 324.STRINGS:22.131 >

1z@e EnC

As arule of thumb, a utility program that does not commence with a fairly
clear- cut menu of what the program does is a bad program. And if you
don’t agree with that statement now, you certainly will at some time when
you have to return to a complex but useful program which has not been
used for some weeks and find that you have to spend hours going through
the listing trying to remind yourself of what it does and how.

In this module, which is common to many of the programs in this book,
the user is asked to choose between five numbered functions. If a number
outside the range 1— 5is input, it is ignored.

Commentary

Lines 1000—1020: All of the program modules in this book are labelled in
this way. Normally the modules so headed are subroutines but even where
they are not, they represent a clear-cut program function.

Lines 1030—1050: An uncomplicated way of dressing up the titles used in
the process of the program. STRINGS$ simply prints a line of the same
character, the line being as long as the first figure in the parentheses. The
second figure is the ASCII code of one of the graphics characters referred
to in Appendix A of the Dragon manual. These characters can be printed
on the screen but not displayed in a program line since there is no key onthe
keyboard which will access them.

Line 1140: An economical and time-saving way of choosing between the
different destinations. Without the ON...GOSUB we should be looking
ataseriesof fiveIF. . THEN. .GOTOs. Thedestinationchosen by this line
will the Zth, based on the user’s input.

Line 1160: Although lines 1000—1020 serve no useful purpose, lines which
return the program to the beginning of this or any other module should
always point to these first, decorative lines since you may, at some stage

i0

Chapter 1 Storing and Searching

want to add another line before the present first, functional line at 1030,
necessitating changes to any lines which took 1030 as the start of the
module.

Lines 170—1200: These lines are not strictly necessary but they neatly
terminate the use of the program.

Testing Module 1.1.2

At this stage, all that can be tested is that the module presents a neatly
ordered menu page and accepts an input. Inputs in the range 1—4 should
result in an undefined line error report. Input of 5 should terminate the
program. Any other input should be ignored.

MODULE 1.1.3

I N e e e e b et e ibiiad]
PEM FILINCTIONAL SUBROUT IMNES
IR IV 1 50030 40500 00 R RN K
ILINE TMPLUT Gw

LET Q=

RETLRH

LET ST=THSTR ST+1 .BRMCS>. "~ >
FETLImN

When a function, whether complex or simple, needs to be carried out
several times and in several places during the course of the execution of a
program, it is worth considering either defining a user-defined function,
which will be discussed later, or inserting a short subroutine which will do
the job. These two short subroutines need to be entered early on since they
are called up fairly frequently by other modules but the explanation of
their functions will be left until they areactually used.

MODULE1.1.4

1
1
1
1
1
1
E
1
1
1
1
L3
1
1
1
1
1
1
1
1
1

2 T 4 S 540 540 5 3 S S S S A
REM EMTRY STYRUCTURE
A e e e e et
F-r-l_EAl?x FCLEAR 2aaaa
cSTRINGSC 16 . 1
Ao, crrad 122 >+-'FILE STRUCTUR

=
=
=
=
=

72.STRING=C 1), 122>
MEIST SHOL MAMY ITEMS IN EACH

NN@@N@@N@“NN;NNQ&NN@N&

1>
S tnarest s CHR®C 122 3 "of " CH
2 To %<
PITEM Tty
IMPLUT AmC T >

MEXT T

OIM Bec 399>

LET B$<QA5=CHRSC & et
B3 1 D=CHRBC 255 Dt~
=2

GOTO 1902

NANAANAOREAAMAYG
ONNASWNHYADOZ AN AEWNED

The purpose of this module is to provide Unifile with its chameleon-like
properties by allowing the user to specif'y the kind of file to be set up, and
the names of the items that a typical entry will contain.

The Working Dragon

Commentary

Line 1530: PCLEAR | is an important instruction in programs such as this
one, which require as much memory as possible for maximum usefulness.
When you switch your Dragon on it automatically reserves roughly 6,000
memory locations for use with graphics. Since we shall not be using
graphics in a data-handling program like this one we can reduce the
amount of memory given over to the display. All we actually need is one
‘page’ or screenful of memory on which to display the program’s printed
output. This makes available an extra 4,500 memory locations — a
considerable addition. The other command on this line sets aside 20,000
memory locations specifically for our filing use, otherwise we would
quickly run out of space.

Lines 1570— 1630: In this section the user is requested to input the number
of items which a typical entry will contain, and then to give each item a
name, such as ‘name, address, etc.”. An array called A$ is set up, with as
many elements as there will be items per entry. Note that although the user
specifies X items, the array AS$ is set up with apparently only X-1 elements
in it. This is because in the version of the Basic language which the Dragon
uses, all such arrays actually start with element number zero. You can
ignore the zero element in your programming, which does make the
numbering of things more sensible, but then again it wastes space. It’s sad
that a modern machine such as the Dragon has to be tied to such an
outdated convention.

Line 1640: Our file will be held in thearray B$, which has 499 + 1 elements.
One limitation of this will be that the total number of characters in any one
entry will not be able to exceed 255 and the program will have to be made to
ensure that this does not happen inerror.

Lines 1650—1660: The file will be arranged in alphabetical order of the first
item in each entry. The method we shall use to insert new entries into the
file in their correct position requires that there be some entries there
already,to compare the new entry with. So rather than start with anempty
file we insert a pair of dummy entries. The actual entries are the single
characters CHR$(0) and CHR$(255). Neither of them actually mean
anything, they are simply the A and Z of the Dragon’s alphabet and any
subsequent entry which begins with a normal text character will
automatically be inserted between them.

Line 1670: The variable N records the number of entries in the file. Because
of theeccentric numbering of the arrays, N will seldom if ever be used on its
own, but usually as N-1 or N-2.

12

\enapier @ witwany

Line 1680: Subroutines end with the RETURN command, returning
program execution to the line which called the subroutine up in the first
place. The difference here is that during the course of this module we
cleared the memory, and this led to the loss of the return address of the line
which called the subroutine. Hence in this particular case we need to
specify the return address.

Testing Module 1.1.4

You should now beable to RUN the program and call up the first function
on the menu. You should be requested to specify the number of items in
each entry and then to name the type of item. Having named the requisite
number of items you should be returned to the menu. You may wish to
check, in direct mode, that the names of the items are stored in the first X-1
places of the array AS.

MODULE 1.1.5
Zoaoa RE
221 REM NORMAL INPUT
2oz REM
22 LET R®=""
2a4a TRINGS:CS . 142>
Zasa PRINT ® LCHR®C 12285+ "ENTRIES" +CHR=
c12s >
262 PRIMT T4 STRIMNGS. 9. 131 >
2a7 OMMANDS AVAILASLE
zas ITEM <i ECXFXED‘ FPRINT
s
zas .
2102 S -1
211
212
213
2135 < R= 2HLEN <O >>2TS THEN PRINT
EH TIFOR =1 TO SO0 NEXT
o RE
2162 IF @e=rZ2z~" THEN RETIJRN
2179 LET R®=R%+0O%
2120 HEXT I
2192 cL<S
2202 cosSue 250
2219 GOoTO zZe2a

The purpose of this module is to accept the input of a new entry composed
of the correct number of items specified in the last module and to present
the new entry to the section of the program which will insert it into its
correct place in the file.

Commentary

Line 2030: RS is the string in which the entry will be built up before being
placed in the main file.

Line 2130: Items for input are all accepted by the short subroutine (already
entered) at 4030. All this does is to add the character | to the end of each
item. This symbol will later be used to redivide the entry into its constituent
items. This means that the character | is a reserved symbol as far as this

13

e yYuinuly viayun

program is concerned, and if you include it in an item then you are likely to
get a nonsense result fromthat particular entry.

Line 2150: Having accepted an item, the length of the entry is checked to
see that it will not exceed the maximum length imposed by the Dragon of
255 characters for a single string.

Line 2160: At any point in the process of inputting an entry, the user can
type ZZZ as an item and the program will return to the menu.

Line 21 70: Provided that theentry is not too long and the user has not input
Z7Z, theitem just input, with its added T character, is added to R$ which is
being built up into the completed entry.

Line 2200: The module which inserts the completed entry into the main file
is now summoned up.

Testing Module1.1.5

Though items cannot be inserted into the actual file, you should now be
able to call up the first function on the menu, specify item names then call
up this module and input items under your named headings. Putting a
temporary line 2500 RETURN should enable you to go on doing it
indefinitely. You should check that the module does not accept entries
whose overall length is greater than 255 characters.

MODULE 1.1.6

2T REM¥ ¥kt r**v**:&**:&**:&*x*

ZS1@ REM PLACE DATA IN FIL

zs=2a oS A TR AT AR LA e

Z2T32 IF M@ THEMN G0OTO 25sa

BTA46 CLS:PRIMT @ 14%22+1A. "FILE HOL FULL

222 MEXT I:RETLURN
IMT < LOGE hH—1 D LOGC 25>
HER

2582 LET TE=LEFT=mdRE.IMNSTRCR®
2532 FOR K=POWER-1 TO @ STEF —1
25 STwl GOSUE 402 LET Is=LEFTSC B

f>—1>

S.eT—1 >

IF Ts>Um THEM
IF TH<s THER
IF S>M—1 THEM LET S=R33
THEM LET S=1

L GOSIUIR 42€a LET US=LEFTSC RS
THEH LET S=S—1

TO IMT-S+2> STEP-—1

B®c I—1 >

I
2712 LET B%.S+1>=R%
2722 LET H=b+1
2732 RETURHM

Probably the most complex module in the program. The purpose of this
module is to determine the correct place for a new entry in the file. To
understand its functions you must first of all understand the technique of

14

Chapter 1 Storing and Searching

the ‘binary search’ which is used to dramatically reduce the number of
comparisons between entries that have to be made before the correct
position is determined. Consider the following example:

We have established a file containing 2,000 entries (not in this program,
but never mind) and there is a new entry which needs to be inserted at
position 1731, though the program has yet to determine this. The program
begins its search by looking at the first entry in the file and comparing it
with the new entry. The new entry is found to be the greater of the two
alphabetically and so the program proceeds to examine the nextentry in the
fileand so on for 1, 731 comparisons until thecorrect place is found. Thisis
astraightforward procedure and an easy one to program. Compare it with
this:

The program begins by examining the entry in position 1024 in the file,
since 1024 is the greatest power of 2 which s less than the total number of
entriesin the file. Entry 1024 is foundto bealphabeticallyless than thenew
entry and so the program adds 1024/2 to the original 1024 and moves onto
entry number 1536. The entry at 1536 is still less than the new entry and so
1024/4 is added to 1536, making 1792. Entry number 1792 is greater than
the new entry and so 1024/8 is subtracted from 1792 giving 1664. The
search proceeds at the following locations in the file and with the following
additions or subtractions:

1644 (then add 64)
1728 (then add 32)
1760 (then subtract 16)
1744 (then subtract 8)
1736 (then subtract 4)
1732 (then subtract 2)
1730 (then add 1)
Final result 1731.
The power of a binary search should be apparent.

Commentary

Lines2530—-2550: A check is made to determine that there is in fact room in
the file for another entry.

Line 2560: This linedeterminesthelargest power of two thatisless than the
total length of the file (including the zero element).

Line 2580: Using the powerful INSTR function, which scans a specified
string for any combination of characters named, we find the first T in the
new entry and take everything to the left of that as the first item in the
entry, TS.

1 he Working Uragon

Lines 2590-2650: This loop, using decreasing powers of 2 to add and
subtract from the number of the search location, moves through the file
carrying out the type of binary search described above.

Line 2600: This line calls up the one line subroutine at line 4060. The
purpose of that subroutine is to search for the first occurrence of the
chavacter T in whichever entry in B$ is pointed to by the search variable S.
The search begins at character ST, which in this case is set at 1. The
resulting figureis used in line 2600 to identify the first item of the particular
entry in B$.

Lines 2630—2640: If the search moves beyond the confines of the file it is
shunted back in.

Lines2660-2670: At the end of the search the fileentry next to which the
new entry must be placed has beenidentified. Thesetwolinesare needed to
see whether the new entry should go before or after the existing one.

Lines 2680—-2710: The new entry is inserted into the file by the simple
method of movingeverything above its intended position up one place.
Other versions of Unifile for other popular micros have avoided such a
solution as being too slow, leading to complex methods of recording the
correct position of each entry in the file. In the case of the Dragon, the
speed of the machine meant that, even with a fairly full file the wait
involved in shifting all the elements one place is such that it is not worth
wasting the extra program space on more complicated solutions. Were the
Dragon to be mass marketed with a 64K memory, permitting a practical
file of more than 1,000 items easily, then you might want to look again at
that decision. If you happen to like complexity for the sake of it, I would
refer you to the method described in the same chapter of the previous book
in this series, The Working Spectrum.

Testing Module 1.1.6

You should now be in a position, having set up your file, to enter some
items and see them correctly inserted into the main file. Since you have not
yet entered the module which displays the file, this can only be checked in
direct mode by first entering one or two items and then printing out
B$(1),B$(2) etc. If the module is misbehaving, work through the procedure
(asyou have entered it, not as it is in the book) with paper and a pencil, for
the entries you have made. Such a technique is almost always the best way
of debugginga complex module such as this. ‘Sstarts as 2 and B$(2) would
be..... ’ may seem like a laborious method but itreducesthecomplexityto
a manageable level.

16

Chapter 1 Storing and Searching

MODULE 1.1.7

STRINGS<Q .14

LCHRSC 128> A28 ARmH - veriree
LSTRINGS: 2. 121 >

PiAT SEARCH JYTEM® . " >ENTER
DN FIL

-
=12 FDR S1w1 TO ti-2
z= IF INSTR - B%dS1)>.Sm><>a THEN GOTO =

IF INT: S1 »=HMH—1 THEN RETURN
PRIMT “EMTRY Sl ":—"
LET ST=o

FOR I=0_ TO -1

LET TEMP=ST+)

LET S=S}:GOSIIB_ 405 - PRTIHT A®CTI > "
- BS<S1 >, TEMP . ST-TEMP >

LET S1=S1+1
1D¢R2 . "xearch: "

LE :
FOR NEXT ITEM®™
TO AMEND"
TO CONTINUE SEARCH"
TO QUIT FOUNCTION

THEN GOTO 2&=2a
EN GOTO =S
THEN GOSUB 3@t GoTo 36

IF Pe="ZzZ" THEN RETURH
LET S1i=S1—-1.G0T0Q I=SA

6D C6D 0 6 6 0 6 L6) 6 id 60)~ LDid) i) W)))

Having placed your entries into the file, it would be nice to know that they
can be retrieved for later examination. More than that, since they are
stored in an electronic marvel, it would be nice to think that they could be
retrieved at high speed and inclever ways. This is what thismodulesets out
toachieve. Here again, we make use of the INSTR function on the Dragon,
one of the most useful innovations to have surfaced in recent years.

Commentary

Line 3530: S1 is the variable that will be used to point to the entry to be
displayed. Note that it starts at 1 sincethe first real (asopposed to dummy)
entry is at B$(1).

Line 3570: To begin with the user is offered two choices:
1) to enter some characters which will then be searched for in the file.
2) to press ENTER, which will display the first item in the file.

Lines 3610—3640: If the user inputs anything other than ENTER, this
simple loop will begin a fast search for it through the file. All that happens
is that the INSTR function is applied to each item in the file in turn. If it
produces a value other than zero, then the specified combination of

17

The Working Dragon

characters is present in that file entry and it is displayed by a later part of
the module. Having displayed an item which satisfies the search criteria,
the search may be continued later if the user requires.

Line 3650: You may wonder why the INT function, which reduces a
number like 1.16 to the integer 1, is applied to SI. The reason is that in a
module you have yet to enter, Sl is set equal to the search variable S from
the binary search. That variable can sometimes pick up a totally invisible
fraction as a result of inaccuracies in the LOG function. You cannot see
anythingirregular about the value of the variable, but it will never be found
tobeequal to an integer like N (the number of items in the file). Asa safety
check against this extremely infrequent occurrence, the INT function is
used. It could just as well have been done at line 3240 in the next module,
which sets SI =S+1.

Lines 3660-3720: You should recognize what is going on here from
previouslines youhave entered. The subroutineat line 4060isbeingusedto
find the T symbols and thus identify the different items in the entry to be
displayed. The difference here to previous uses is that, with the aid of the
variable TEMP, the loop works all the way through the entry, rather than
finding only the first item: TEMP records the first character of an item
while ST is set by 4060 to the position oftheTat theend of theitem — then
TEMP is set to the position after ST, and so on.

Lines 3740-3850: Once an entry has been displayed, anew set of optionsis
offered to the user. The search can be continued (for the same target
characters), the next entry can be displayed, the search module can be quit,
or theamend modulecan be called.

Line 3860: SI must be decremented since it has already moved on one
place. This only happens if the user makes an incorrectinput. The effect is
simply to leave the same entry on display.

Testing Module 1.1.7

Having set up and entered some material on your file, you should now be
ableto search for any combination of characters within the file, ortomove
through the file entry by entry, pressing ENTER. If a combination of
charactersisnot present in the file, the program should return to the menu.
Thesame should happen if you move past thelast entry. TaggingT ontothe
front of the characters you specify for a search should result in a search
only for items that begin with those characters.

18

Chapter 1 otoring and Seaiching

MODULE 1.1.8

5 T 04 A A 0 0 0 2 A A A A A
RPEM CHAKNGE ERTRY

za ITEM™
aa CELETES LIHOLE ERNTRY"
as TO QUIT FLUMCTIOR”
k=153
o
1 7 R
138 1T MEFCBFIS1Y . T
me <
12 IR amoa RETURH
zaa
1€
za E
29 -
A0 LET S1=S41
= PETLWRH

This module permits the user to make changes to existing entries and to
delete entries from the file.

Commentary
Line 3150: Note the continuing use of the short subroutine at 4030 to
accept inputs.

Line 3180: Whether or not any changes are actually made, a new entry is
being built up in a string called R$, which will be presented to the insertion
module. If ENTER is pressed in response to any item, theitem is lifted out
of theoriginalentry and placed into the new entry.

Line 3190: Aninputof DDDresultsindeletion of theentry by amoduleyet
to be entered.

Line 3200: Entry of any combination of characters other than the prompts
specified in the menu for this module is taken as the input of an item to
replace the item currently on display.

Line 3220: The current entry is deleted since the new entry may not fit
alphabetically into the same position.

rne vvorrking vragon

Testing Module 1.1.8

The module cannot be properly tested until the next short module has been
entered.

MODULE 1.1.9

ADOO R E M A R KK R K
LE

4540 L_ET B%C I s=R=c I+1>

4SSa flE"T I

a4 See ET H=ti—1

4= EETIJR‘I‘I
This module simply shifts the whole file, from the position above the item
to be deleted, down one place, thus overwriting it.

Commentary

Line 4560: Note that there is now a duplicated item at the end of the file —
the dummy entry. Thisis not erased since once N has been reduced by 1, the
program will no longer be aware of the position of the second entry.

Testing Module 1.1.9

Youshould now be able to amend existing entries and also to delete them
from the file.

MODULE 1.1.10

saza REM P

S21a REM DATA FILES

D2 R E 4 0 o R A AR KA K O KK

22 MOTOR OM-AUDIN ON:CLS: IMPUT “POSIT

TAPE THEN PRESS enter <MOTOR IS OH>
]

LINPUT SPLACE RECORDER @

EH_PRESS enter : '": Qs
U ELNE T T ONS AwATl
SLOAD DATA" : THPUT

L@ 0M 0 GaTa SarFa

10000 NEMT

ANAARDAAANARQD

IM B:ca95 >

20

Chapter 1 Storing and Searching

This module, or one very much like it, will be shared with the vast majority
of programs in this book. Its purpose is to allow the user to save the
contents of the file and the associated variables, on tape. The advantage of
thisisthatif changeshaveto bemadeto the program, or whenthe machine
is switched off, the data need not be lost. Many modern micros
automatically save the data associated with a program when that program
issaved (or CSAVEd), unfortunately the Dragon does not. To make up for
this the Dragon provides a flexible set of file handling commands which
allow data to be stored on tape and retrieved with ease. This module is
designed to make the process of finding the right place on the tape and
saving or loading as painless as possible.

Commentary

Line 6030: This command is included for those who have purchased the
special lead to connect the Dragon to their cassette recorder and can
therefore place their recorder under the control ofthe Dragon. If youdon’t
have such a lead it will serve as a reminder of the procedure to follow in
loading or saving. What thelinedoesis to switch on the cassette recorder’s
motor, and the Dragon’s AUDIO function, thus allowing you to position
the tape in the recorder to take account of the contents.

Lines 6040—6050: Having positioned the tape, the cassette is put into
record or playback mode, according to whether you want to load or save.
The correct function is then chosen from the menu.

Lines 6070—6180: This section prints a ‘header’ of several seconds before
actually recording the data. This ensures that when you read the data back
you are not going to find it immediately preceded by the garbled contents
of some previous recording, leading to an error message. The rest of the
section opens an output file, that is, opens communication with the
cassette recorder and then ‘prints’ into that file (i.e. onto tape) the contents
of A and BS.

Lines 6190—6320: This section is slightly more complex since, before
loading a set of data from tape, the memory must first be cleared in the
same way that it would bein setting up a filein the first place. In addition,
once having cleared the memory, arrays must be set up to receive the data.
In the case of the array A$, this cannot be done until we have first read
from the tape the number of item names it is to contain. Lastly the dummy
entries must again be loaded into first and last place. They cannot be saved
ontapeand reloaded since they are not recognised asreal characters by the
Dragon’s operating system. Since the memory has been cleared we must
return with a GOTO, as in Module 4.

21

The Working Dragon

Testing Module 1.1.10

Having entered some data and satisfied yourself that the rest of the
program functions are working satisfactorily, call up this module from the
menu and save the file on tape. Stop the program then restart with RUN,
which will wipe out all the data. Call up this module again and reload your
file— it should beas if you had never lost the data. If this module functions
correctly then the program is ready for use.

Summary

You have now completed the input of a substantial and complex program
which I hope you find useful in a variety of applications. Along with that
process you have also learned a number of techniques which will stand you
in good stead whenever you decide to embark on ambitious programs to
store and process non- numeric data.

Moreimportantly, however, if you havetaken thetroubletounderstand
what you have been entering, you will have gained confidence that
substantial and complex programs are not as awesome as they are often
made out to be. Using a modular approach which breaks down the
program into aseries of manageable tasks, applications like thisone can be
tackled by anyone who is prepared to invest a little time (and a little hair).

Going further

I) The program is deliberately written without much use of
multi-statement lines. Once it is working well and you understand what is
going on, try to reduce the number of lines by combining them where
appropriate. Substantial memory savings are to be had in this way.

2) Theprogrammakes no provision for output to a printerif you possess
one.

3) One fascinating challenge would be to see if you could make the
program handle numeric data as well as strings. This would involve setting
up a numeric array with 500 elements, at least, and making provision to
input values to it and perhaps some search commands appropriate to the
stored values, like ‘search for all items larger than specified number’.
Thereare quite a large range of applications where the ability to store one
or more numeric items in an entry would be an advantage.

1.2 UNIFILE 11

After entering Unifile I and debugging it, thelastthingthatyou may want
to face is variations on it, so feel free to skip this part of the chapter forthe
present ifyou’dlike tomoveon tofreshpastures. Atsomestage, however,
you will want to come back to this program to solve some problems that
Unifile itself is not designed to cope with. Unifile is fine for those files
which have a regular structure, and many do. Equally, there are a large

22

Chapter 1 Storing and Searching

number of applications where you simply do not know in advance how
many items there are going to be in an entry. You may, for instance, want
to catalogue your books. You could set up theoriginal Unifileprogramto
request author and title but if you happen to have several books by the
same author, that is going to be a great waste of space.

Unifile IT is designed to cope with such lessstructured files. It is more
flexiblethan UnifileI inthat you can go on adding itemsto anentryaslong
asyoulike(providedthat thetotal length does notexceed 255 characters).
Thepriceto be paid is that the program is more complicated to usesince
therearenone of the easy prompts as to which item to put in next. If you
want to label items you have to specify the labels to be attached to them.
Theprogramis alsomore flexible in that it will conducta ‘multiple search”
— that is, it will search for entries in the file which satisfy a number of
search criteria at the same time like all entries containing ‘red’ and
‘London’ and ‘male’ if you were looking for the entry of a red-headed man
who livesin London.

Because the program is so similar to Unifile [we shall begin by entering
the only new module it requires and the rest of the modules will only be
commented upon insofar as they differ significantly from the original.
Note that the modules are in the same place within the program but that
there is not an exact correspondence between line numbers. You can use
Unifile I as a basis for entering this one but you will need to adapt GOTOs
and GOSUBs here and there.

MODULE 1.2.1

™M
S212 REM ITEM TYPES

e
r ZZzz" THEN RETURN
THEN HEXT I :RETLURN

THEN INPLUT “HUMBER: " TY
v io® LET AR TYPE—1 >=

CCLS GOTO sa4a
42 GOTO =110

Since there will be no regular structure to the files this program will handle,
there will be no regular set of headings for the items. This module allows
headingsto be stored which may beattachedtoitemsif the user specifies a
heading when an item is input.

Commentary
Lines 5030—5040: The effect of these two loops is to display all the items
stored in A$ in batches of 7.

23

The Working Dragon

Lines 5070—5130: The user has the option of moving on to the next batch
of item headings, quitting the module, or inputting III. In the latter case,
the user is asked to specify a position in the dictionary and a heading to be
placed inthat position. There is no provision fordeletion, whichcaninany
case be accomplished by simply inputting an emptystring to the desired
position. The use of these item types will be discussed later.

Testing Module 1.2.1

Full testing of this module cannot be undertaken yet, but a temporary test
can be made by dimensioning an array A$(49) in direct mode and then
entering GOTO 5000. You should be a>le to enter item types, to delete
them and to alter them.

MODULE 1.2.2
1000
1212 REM MENL
1929 REM
1930 CLS:PRINT ® S,.STRINGSCS. 140 >
1949 PRINT ® 41.CHRS<128>+"UNIFILE"+CHRS
cize
i@5a PRINT ® 73.STRING®CS. 131
1959 PRINT:PRINT MMANDS AVAILABLE :
1070 PRIMT: PRIMT 1>SET 1P NEW FILE
1920 PRINT 25ENTER INFORMAT ION'
1990 PRINT 3>SERRCH/DISPLvacHnNrE"
1199 PRINT 4 >DATA FILES®
1119 PRINT SONEW ITEM NAMES"
1120 PRINT = sS5STOP
113@ PRINT: INPUT “WHICH DO YOU REQUIRE
v Z
1140 CLS
115e oN = SUS 1500. 2000. IS0 . S000. SO0
s112e
115 cLsS
1172 GOTO 1000
1189 PRINT & 2£0.STRINGS 22, 140>
1150 PRINT @ 292.CHR®C 1225+ "FILING SvYsSTE
M B OSED e tRe: 125
1200 PRINT @ =224.STRINGSd22.131 >
1212 ENC

For comments and testing see Unifile 1.1.1, with the exception that you
should be ableto callup the item names function, which willreporta BAD

SUBSCRIPT error.

MODULE 1.2.3

2 S 560 S0 5 0 S S0 2 S S S A S A

4210 REM FUHCTIONAL <SUBROUTINES
40920 REM b AN
4030 L_XNE INPLUT Q%
4040 [al Elal TRl
4950 PETI RN
4050 LET ST=INSTRI ST+1 . Bsd S >, "
4070 RETLUIEN

As Unifile 1.1.3.

24

Lhaprer I Stonny ahu sean.my

MODULE 1.2.4

2 P14 6 5 20 2 4 S 0 2 4 S 2 4 A A
REM ENTRY STPUI‘TUPE
REMX 4K *
Pl Emam] CLEAR Eooos

DIM B=c 455>
LET B%co >=CHR®c @ e -
BeC 1 S=CHRS « 2% 3

[P
AAGAANRAAAQ

GoTo 1e22

Shorter than the equivalent in Unifile, since there is no need to make
provision for the input of item headings here.

Commentary

Line 1540: The array M$ will be used to store the individual items to be
searched for when a multiple search is specified. Accordingly, up to 20
items can be included in the search.

Line 1550: A$ will be used to store the item headings input by Module
1.2.1. There can be 50 such headings.

Testing Module 1.2.4

Calling up menu function 5 after calling thismoduleshould not result in an
error as before.

MODULE 1.2.5

ZOOD R E I K 5 A A A A A A A A A A
Z@1a REM NORMAL INPUT

ZOZO R E MK A A A A K K A A A A A

Z©32 LET R®=«"

2042 PRINT ® 10.STRINGSCS. 140>

ZosSa PRINT 2 42.CHRSC 128 >+ "ENTRIES " +CHR®

28
2052 PRINT ® 74.STRINGSCS.131 >

FIED < - **
RN TO MENU"

ze 3

2102 PRINT “NUMBER OF ITEMS: «“,N—-2," - Soe"

2110 cosSuUuBs 4938

2129 IF Am=rZZZ~" THEN RETLURN

2130 IF LEN <RS>+LEN <Q®>>255 THEN PRINT
CENTRY TOO LONG. " FOR =1 TO S222:NEXT

<1 RETURN

Zi1ae 1F LEFET=me r;-;: e £ THEN PRINT Am<VvA

LCMID®C A% 2.2 >5—1

2iS0 IF LEFTS Q%. & PRIN ID=<

£ EN T ™M
DWm. A4, LENCQ®>—4> EI_“E PPINT C“UNTYPED: ;i LE
FTac Q% . LENC Q% > —

2172 LET Ps=wg+r\

2180 IF LEFTHCQ®.15><>"%" THEN GOTO 2110
2192 cCLS

2200 cosuBe_ 2=ea

2212 GoTo =zZe2o

Function as in Unifile Module 1.1.5.

25

fhe Working Dragon

Commentary

Lines 2140—-2150: These two lines illustrate one difference between this
program and its predecessor. If the first character of an input consists of
the symbol # then the next two characters are taken to be a two digit
number between I and 50. The item input is reprinted with the item heading
found at that position in A$ preceding it. If no item heading is specified,
the item is reprinted with the heading Untyped:.

Line 2180: If the item input wasa single asterisk, thisis added tothe entry
but the entry is regarded as finished and control is passed to the insertion
module.

Testing Module 1.2.5

You should be able to input item headings and to see them displayed if you
tag #NN onto the front of an item you are inputting (where NN is the
number of a heading you have entered).

MODULE 12.6

2see REM
2510 REM PLACE DATA IN FILE

2520 RE
2530 IF H<S00 THEN GoTOo2Ts0
2D40 CLS:PRINT ® 14%32+10."FILE NOW FuULL

2SS0 FOR I=1 TO S000:HEXT I'RETURH
2552 LET POLER=IHT <L OGCH—1>-L0DGI2>>
2570 LET S=2"POWER

2328 LET FeclLelPTacre. INSTR: R=
2290 FOR K=POWER—1 TO © STEP 1
200 LET ST=1:GOSUB 4050 LET Us=_LEF TS B%

© LET ST=1 GOSUB 4060 LET Us=LEFT=< D%
<S>, ST—1>

2670 IF Tw<ll® THEN LET S=S-—

2580 FOR I=H+1 T0O INTCS+2> drer—1

2550 LET B I>=B%cI—1>

2700 HNE>T

27390 RETURHN
Identical to Unifile Module 1.1.6.

MODULE 1.2.7

asee RE
BT1©@ REM SEARCH
RE

3530 LET S1=1

2B40 IF N=2 THEN RETURHN

330 PRINT ® 11, STRINGSCS.140>

2SS0 PRINT @ 43, CHR®. 12& >+ "SEARCH"+CHR®C

128>
2570 PRINT ® 7S.STRINGSCS, 131 >

2520 PRINT “>INFLUT SEARCH ITEM". " >ENTER
FOR FIRST ITEM ON FILE"

2SS BRINT - >-mmtt FOR MULTIPLE SEARCH:
2500 PRINT STRINGSC 32, 1

2E10 INPUT “"ENTER SERPCH CDMMRND " iSw

26

Chapter 1 Storing and Searching

oTo avae
HEN GOTO 3Is20

2
IF INSTR C(E®<S15>.S®%3<>0 THEN GOTO 2
HEXT =1
RETLIRH
cLs
PRINT - INPUT “HUMBER OF SEARCH ITEMS
3 =]

F ol TO SEFIRCH—1 PRINT "SEA
RCH ITEM " k+1:" fLOIMPUT Q® LET M®C K O

2710 FOR K~ TO SEARCH~1 : IF INSTR(EB%S1 >
SMBC K D> 3 >@ THEH HEXT ¢ :GOTO 3730
72 E:

2730 IF_ INTE S1 smf—1 THEN RETURH

2228 EETMT cENTRY nis1avi—w

27E0 LET ST=

2770 LET TEMP=ST+1

272G LET S=S1 GOSUE 4050

Z79@ IF MIDSCEB®CS1 >- TEMP . 1 >="%" THEN GOT
=13

RO IF MIDSC BSCS1 2. TEMP . 1 D= o THEN PF‘I
NT R’(VHL(MIDS’E‘(QI S, TEMP+1 .255—1 >
CLET C1l=3
2210 PRINT MIDSCB3C<S1 >. TEMP4+C1 . ST-TEMP~C
1 32:LET C1=0
2IN20 GOTO AT
LET SimS1+1
L Mmemeoi s M S

e .-
FOR HEXT ITEM'

TO CONTINUE SERARCH"
TO QUIT FUNCTION®

IF Ps="CCC" AND Ss="MMM" THEN GOTO

IF SCh_THEN coTo '=.<59
I N GoTa a7
IF THER Endla 2010 soTa 37

PE=1Z2Z2" THEH
I.ET S1=S1—1:G0T0

The same function as the module in Unifile I exceptthat provision is made
for multiple searches.

Commentary

Lines 3680—-3720: If a multiple search is specified by the input of MMM
then theuser is asked to specify how many items are to be searched for (up
to 20) and then to input them one by one. The file is then scanned for the
first of the items specified. If it is found in an entry, then the same entry is
scanned for the next search item until it has been scanned for all the search
items. If all are present in an entry then the item will be displayed. If no
entries are found to contain all the specified search items, the program
returns to the menu.

Line 3790: Since there is no regular number of items in an entry the
program goes on printing items until it comes across an item which consists
of *.

Line 3800: Itemn headings from A$ are printed where appropriate.

27

The Working Dragon

Line 3920: To continue a multiple search we have to jump back into the
middle of the loop in order not to reset Sl to 1.

Testing Module 1.2.7

As for the equivalent module in Unifile except that you should be able to
specify a multiple search too.

MODULE 1.2.8

S R e e
REM CHANGE ENTRY

A A A

CLS:PRINT "ENTRY " S1:":—"

LET TEMP=ST+1

LET S=S1:G0SUR sasa

IF MID®C B®< <1 5. TEMP.ST-TEMP >="%" TH
EN LET REs=R®+"¥~" GOSLIB 4%230. GOSLE 2510
RETLIRH
P10 IF MID®. B®CS1 > TEMP .1 >="£" THEHN PPI
HT _ASc VAL MIDSCB%. S1 5. TEMP+1 . 25>>—1 >3 * :
FLET C1=73
2112 PRINT MID®CBR®<S1>. TEMP+C1.ST—TEMP—C
1>:LET 9
Z1z2e PRIN ® THRR2+12. mend
31202 PRINT COMMANDS AVAILABLE :
21422 PRINT > ENTER’ LEAVES ITEM LUNCHANG
EC "
1T PRINT “>HEtd ITEM EHNDING WITH * >*
R €@ PRINT ">ENTER REPLACEMENT ITEM”
2170 PRINT ">’ ZZZ° QUITS WITHOUT CHANGES
2182 PRI DELETES WHOLE ENTRY™
2192 PR REMOVES THIS ITEM™
2202 GO
221@ cCuL
2222
=222

F G 3 2
2230 IF RIGHT®CQS®.R2<c>">~" AMD Q¢ >t~ T
2252

2244 IF LEHCR® Y+ST-TEMP+1 >25% THEM CLS : P
HOLI TOO LONG." . FOR I=1 TO So

F242 LET R®= P’..-MI.,(B$< ST >. TEMP . ST~TEMP.+
1

2252 CcLsS
F o

2azsa EN GOTO Raca
2272 E1of THEHN GOSUB 4522 RETURHN
Izax THE-QA®. 2>3=">~" THEN LET Qe=LE

RIG
FTsc cvs LENCR® >—2 > LET Qmmomar~"
LEHNC RS>+ ENC D% >>255 THER F'PINT (=
CTENTRY HOLI TOO LONHG. ' =1
IR M

3322 SOTO Z2&el

Aslightly more complex module thanthe equivalent onein UnifileI, since
provision must be made for theinsertion and deletion of items, not simply
of entries.

Commentary

Lines 3230: Input of RRR does not add the existing item to the new R$
being built up, thus effectively deleting it from the entry.

Line 3240: In the case of an input endingin > theitem currently on display
is added to the new R$ thus insertions are always after the item currently
displayed.

28

Chapter 1 Storingand Searching

Line 3280: Insertion of items input ending in > .

Testing Module 1.2.8
Youshould be able todelete entries, to amend items, to delete itemsandto
insert items.

MODULE 1.2.9

asoo PEM"*)"**********ﬂ**t*******
4519 REM TELESCOPE LE

RE
4530 FOR I=S1 TO
3338 [EF &s71.18a"71. 5
4SSO NEXT
4S60 LET N=N-—1
4570 RETURN

Identical to Unifile 1.1.9.

MODULE 1.2.10

cooo R
co10 PEM DATA FILES

920 RE

€230 _MOTOR ON:.AUDIO ON:IINEUT “POSITION T
APE THEN PRESS enter CMOTOR IS ONDY>: ", Q%

@40 MOTOR OFF ' INPLT “PLACE RECORDER INT
O CORRECT MODETHEN PRESS evnter: " Q%

6050 PRINT PRINT “FUNCTIONS AVAILABLE - .
"1 >SAVE DATAY. . "2 3L0AD DATA®" : INPLT “LIHIC
H. DO ¥OuU REQUIRE “.@:'ON @ SOTO S070.51%5a

1 TO 19aaa: NEXT
AsSE"
NT £-1 ASCI >:NEXT

Srhse -1 RETURN
PCLEAR 1 CLEAR 20000 - 0THM ARC49>. Bac
SMEC 19>
OPEN_“I".£—-1."DEASE"
FOR I=0 TO 49 INPLUT £—1.A%CI > NEXT

1 0 _ri-2
INPUT £—1 B=%<I >
NE>T
CLOSE€—
CETTES <A smchirmc @ e~

LET 8%cN—-1>=CHRSBC2SS>+ "~
GOTO 1990

Almost identical to the equivalent module in Unifile I.

Testing Module 1.2.10
Ifthismodule is functioning correctly youdeserve somekind of medal and
the program is ready for use.

Summary
The comments made in relation to Unifile apply equally to this even more
substantial program.

In addition, I hope that entering this program has given you some
insightsinto the strengths of modular programming — as writing it did for

29

The Working Dragon

me. This whole program, when it was first written, took less than a
morning for the simple reason that the structure was already laid down in
the Unifile I program and its modular form made it ciear where changes
would have to be made. Provided that a desperate need for space does not
lead you to compress everything asmuchaspossible, you will savetime and
many tears over your life as a programmer by setting out your programs in
clearly labelled functional units. Not only does this make the programs
readable, it increases the likelihood that you will be able to call the same
routine from different parts of the program, eases replacement of
functions that you feel you can improve upon later and, not least, makesit
a great deal easier to lift whole sections of program out for use in other
contexts.

Going further

1) One sophistication that is present on professional database programs is
the ability to order a search for entries containing, say, four out of eight
specified searchitems. It should not bedifficult to include such a provision
in the present program.

2) The developments suggested for Unifile I would be equally applicable
to this program.

30

CHAPTER 2

Managing your money

Where microcomputers are set to work in the home, it is most often in
handling family finance, and for that reason we turn our attention in
this chapter to three financial programs. Their interest, however is not
limited to those who wish to use their Dragon to supervisetheir finances,
for in discussing the programs we shall be examining problems common
to all programs which handle fairly large bodies of numeric data.

2.1 BANKER

This program is a neat tool which allows you to keep your financial
records in much the same form as a bank statement. It deals with
recurring payments, both regular and irregular and inserts them into
each monthly statement on the day on which they occur.

The program is a relatively simple one compared to what has gone
before but it is worth pointing out that it is not as uncomplicated as it
looks at first sight, since in this program, for the first time, we make use
of a considerable proportion of multi-statement lines. Without them the
program would appear considerably longer.

One of the points to watch out for in entering this, or any other
program which uses multi-statement lines is the behaviour of IF
statements. Such statements are capable of creating havoc if used
improperly in multi-statement lines, creating program bugs which are
extremely difficult to trace. Equally, multi-statement lines can be used to
increase the effectiveness of IF statements by virtue of the fact that if the
condition specified by an IF statement is not met, the program does not
simply skip over that part of the line directly tied to the IF statement, it
skips over the whole of the rest of the line.

In other words, any statements after the IF statement will only be
executed if the IF statement is true. This is so different from the
behaviour of single- statement lines that it is easy to be caught out by it.

The advantage of all of this is that it provides a form of automatic and
elegant GOTO that you do not even have to specify. If you have a series
of 10 operations that will be performed together provided, say, that
C=1 at some point, then with single statement lines you would have to
place an IF statement at the beginning of the section to specify a jump
past the 10 operations if C is not equal to 1. It works but at the same

31

rne yworking vragon

time it feels messy and it is difficult to read a program in which there are a
lot of such jumps.

With multi-statement lines, however, you could begin a single line with
IFC =1 and follow it with the 10 operations. Not only would this work and
save memory, it would actually make the program more readable, since it
would beimmediately clear that the 10 operations form a logical unit.

MODULE 2.1.1

RE
7910 REM FORMAT TITLES

7930 LET P2=14—INTCLENCF®>-2>

TO40 PRINT @ 32%P1+P2.STRINGSCLENC F®>+2.
7050 PRINT @ 32%<P1+1>+P2.CHRSC 150 >+F%+C
HR =< 150 >

TOSO PRINT ® I2%<P1+2>+P 2, STRING®CLENCFS
>+2, 150 >

To7eo RETURN

Inentering the lasttwo programs, youmay have foundthe lines needed to
decorate the program titles a little tedious to enter. This module is the
answer. It createsthesame kind of decorativeboxarounda word or phrase
but once entered it can be applied to a variety of different titles at different
points during the execution of the program. All that needs to be specified
before the module is called up is the line on which the title is to be printed
and the title or phrase itself. Clearly the graphics characters specified in
lines 7040— 7060 can be altered to taste.

MODULE 2.1.2

RE
1i21e@ REM MENU
1920 REM
1930 CLS:LET Fe="BANKER":LET P1=1:GOSUB

1242 PRINT PRINT “COMMANDS AvAILABLE: "

1952 PRINT: -PRINT" 1 >NEW PAYMENTS®
7 =3 3 2 ExAMINE S DELETE FAYMENTS"
BOPRINT STATEMENT"

4>5DATA FILES"
S>INITIALISE"

& >sSToP"

1110 PRINT:INPUT "WHICH DO YOU REQUIRE:

1120 IF Z<>S AND IN=0 THEN CLS:PRINT @7
32. "PROGRAM NOT INITIALISED YET." :FOR I=

T oo

1130 IF PAYMENTS=0® AND <Z=2 OR Z=3> THEN

CLS: PRINT:PRINT "SDPPY. NoNDAanaRvET.
I=1.,72 S920:NEXT I.cOTO_10

2 GoTo 1900
CLS LET Fes="BANKER" ' LET P1=1:GOSUB

=)
= LET LOSED FOR BUSINESS" ' LET P1
s Gosue Cooos STOP

A standard menumodule but its execution should providearmnple proof of
the effectiveness of the previous modulein brightening up the presentation
of the program.

32

Chapter 2 Managing your money

MODULE 2.1.3

2000 REM
2919 REM VARIABRLES

Z®3® FPCLEAR 1:CLEAR 10000 : LET FLAG=O
2040 LET IH=1
Z9T0 DIM ASCSD.1>.ACSS.13:LET ACO. 1 >=999
200 DIM MONTH=C 1 2)=PE°TDPE FOR I=© TO 1

FEBPUHPY v tMARCH: .
RIJGIJST " SEP
b - o PDECEMBER -
2606 I FLAGAO THEM COTO 1606 ELSE LoTo

This module initialises the program variables.

Commentary

Line 2030: The variable FLAG is used in an interesting way here — to make
up for the lack of GOSUB...RETURN when the memory has been
cleared. Normally this module is called from the main menu but on some
occasionsitis called from data file module, before loading data from tape.
In that case, the data file module clears the memory first and then calls this
module from line 2040, first having set FLAG to 1. When program
execution reaches line 2080, FLAG can beeasily usedtodeterminewhether
the program is to return to the main menu or to the data file module.

Line 2040: This program, like many others, is capable of accepting a few
entries without the variables having been properly initialised. After a few
entries the program stops — a frustrating experience. The variable IN
(initialised) is therefore used in the main menu to determine whether this
module has yet been called. If IN is 1 at line 1120 then all the program
functions are available, otherwise you can only call this module.

Line 2060: DATA statements are not only useful for storing complex facts
and figures. Here READ, DATA and RESTORE areusedto simplify the
placing of thenamesof the months of the yearinto anarray for later use.

Testing Module 2.1.3

This module can only be properly tested when other modules beginto call
upon the variables it has set up but you might like to check that the months
of the year are stored in MONTHS.

MODULE 2.1.4

2000 RE
29109 REM ENTER NEW ITEMS

RE

2930 CLS:LET F®="NEW ITEMS":LET P1=0:G0S
us 7ooo

Fo4e PRINT - 1 >CREDIT" .
u "WHICH DO Y0OU REQUIRE :

Z2>DEBIT" : INP
‘iC®ILET C®=CD—

loma PPINT ® FTxI2. 00 INPUT UHAME OF FAY
PMENT

33

fhe Vorking tragon

VSO PRINT @ S*32, "
3\70 PRINT @ 11%32.
G. 9190408710 5>: " R®

J980 PRINT @11%32+424. 9", FOR I=1 TO LENC
F"> STEP Z:PRINT MID®MCR®, I.2 5 - NEST

FINPUT “AMOUNT : "5 Q
CINPIIT YMONTHS <E.

sasa F'E'INT ® 13%k32. "
MENT : *; S

s INPUT “"DAY OF PAY

3190 PRI @ 13%32. cINPUT "ARE THESE
ZhepecT cwot st Te'1F Te=rN" THEN Cl.S 5O
sus seoe

2110 LET PAYMENTS=PAYMENTS+1 :FOR J=PAYME
NTS—1 TO © STEP —1

@120 IF S<AC.J.1> THEN FOR K=8 TO 1:LET m
J+1.KO=AM J, K> LET AC J+1.K>=AC J, K> NEX

STF’ING.(12. 70" 3:FOR Iw=1
MID®C AMC J. 1 >. VAL MID:
2 RenT
LET Amc I, A LLET AC J.@>=a
=S

IF CD=1 THEN LET A J.@>=AC J.2 k-1
RETURN

VOO Wo-4E
futeeivy BTetviip

=)
® LET ACJ.1 >=
=)
=]

The purpose of thismoduleis to accept new payment items, whether credit
or debit, and place them into their correct place in the file of payments.

Commentary

Line 3040: The only distinction made between credit items and debit items
is the setting of the variable CD to O or I.

Line 3070-3080: The user is required to input months in which the
particular payment will be made in a continuous string of numbers, two
digits per month. This is simple and fast but, since it can sometimes lead to
mistakes on input, the program reprints the months apparently entered
with a separator between each so that the user can check the input.

Lines 3110—-3130: The file of payments is kept in order of the day of the
monthon which payment is made. In this section the programscans the file
from the highest numbered day downwards. If the day of the current entry
is lower than the day of the item in the file then the whole file from that
pointis moved up one placeand the nextitem down the fileis examined. In
thisway, by thetime the program finds the correct position in the file for
the new entry, a place has already been made for it.

Line 3140: The month(s) in whichthe payment will actually be made are
recorded in a string of 12 characters. The string begins as 12 0s and then the
positions corresponding to the desired months are set to I. If you wish to
minimise the amount of space taken by the programit is perfectly feasible
to use only two bytes for this, setting individual bits torepresent the desired
months — the trade of f being that more time is required to translate this
kind of representation.

Line 3170: If the item is meant to be a debit (i.e. apayment out), then the
amount of the item is multiplied by —1I.

34

Chapter 2 Managing your money

Testing Module 2.1.4

You should now be able to input payment items together with their
associated months and days of payment. Though you cannot yet display
them, you can stop the program and check that the relevant sections of the
arrays A and A$ contain the payment details in order of day of payment.
At A (0,PAYMENTS) should be 999, a dummy entry to ensure correct
insertion of the first item.

MODULE 2.1.5

sSeee RED
5018 REM COMPILE STATEMENT

SozZo REM¥:¥ AN NN
S93e LEr gunmme

Se4e LET ="STATEMENT" :LET P1=1:GOSUB 7
a0

2959 INPUT "NUMBER OF MONTH FOR STATEMEN

sase FOR @1=1 TO G—1:FOR I=08 TO PAYMENTS
IF MIDS<A®MCI. 1> Q1.1>>"1" THEN GOTO

Soes
S©7e LET SUM=SUM+A<I.o>
SO88 NEXT I:NEXT Q1

5958 CLS 'LET Fe=rMONTH®<G—1>:LET Pi=o: Gos
us e

Siee == INT "BALANCE C-F"; PRINT TABC24>"
' I SUM<® THEN PRINT CHR®C 151 >; ELSE P
RINT CHR®C 159 >,

sSuM;

-
]

PRINT USING "££££.££
FOR I=8 TO PAYMENTS-1
IF MIDWMCAWMCI.1 > Q.15><>"1" THEN GOTO

0~00

R I IN
THEN PRINT CHR®C 151 >: ELSE PRINT CHRm=<

© PRINT AMCI.®>;
® PRINT TABC16>,; 'IF ACI.B><8 THEN PRI
CHR®C 191 >; ELSE PRINT CHR®C 1SS >

® PRINT USING "££££.££":ACI.O>;

. IF _SUM<®_ THEN PR
ELSE PRINT CHR®C 159>
PRINT USING "££££.££";SUM;

IF INKEY®="" THEN GOTO Sz08

S218 NEXT I:@ PRINT: INPUT “enter TO CONTI
NUE " 5 >

S22e RETURN

2

3

2102

48 PRINT USING "£££";A<I, 1> : ACI. &>
S

=

=

7

vt Ty T T Teavieg
0
v

NAZAURAD 03

uan
NRZ
0040
00 0
v}
ir
M3
a4
A
=0
uc
=3
vl
-0
c
3
3}
b
A
-

This module prints out a statement for any particular month specified. A
balance is carried forward from previous months in the same calendar

year.

Commentary

Lines. 5060—5080: These two loops scan each entry in the file for any
payments occurring in the months prior to the month specified for the
statement. Any such payments are added to the variable SUM. It may
comfort youto know that when this program was first entered the variable
used was named TOTAL and the line gave a syntax error report. After a
long time spent cursing the Dragon I realized that variable names which
corresponded to the first two letters of Basic words confused the poor
beast.

35

The Working Dragon

Lines 5100—-5110: Unfortunately the Dragon cannot print text in different
colours, ordebititems could be printed in red. To make up for this a yellow
square is used to delineate columns for credit items and a red square for
debit items, this particular item being the balance carried forward.

Lines 5120—-5210: This loop prints the details of day of payment, nameof
payment, amount of payment and the running total of the account,
providedthattherelevant character in A$(1)is I rather than 0. The account
makes use of the PRINT USING command to ensure that pence are
correctly printed (otherwise £10.70 would be rendered 10.7). The
presentation of the account is in columns and the squares making up the
column are red or yellow according to whether a debit or credit item is
being printed. The coloured squares are obtained by reference to the chart
on page 138 of the Dragon manual.

Note that items are printed one by one and to obtain the next item it is
necessary to depress ENTER: the purpose o f this is to prevent items being
printed and scrolled offthe screenbefore they can be examined if thereis
more than one screenful o f data.

Testing Module 2.1.5

Youshouldnowbeable toentersome dataandobtaina statement for any
month. Inthecase of months for which there are no payments registered
the balance carried forward will be printed. After the last item of the
month’s account, pressing ENTER again will return to the menu.

MODULE 2.1.6

4000

4010 REM DELETE PAYMEMNTS

4020

30558 Fom TaS Ta PATmENT S I T EL S
io=c1. 0>
sACT.

3 NTHS .
4070 FOR J=1 TO 12: IF MxDs<ﬂ-<1,1> g1
227° THenTPRINT AFRI0LTIR

4080 NEX
4050 PRINT PRINT:PRINT "DAY OF PAYMENT : "

.1
a100 PPINT (PRINT “COMMANDS: . . " 1 > oDD
QUI T L A>T ENTE

“DOD: THEN _FOR J=I T
o

(5
3120 I1F Gm THEN NEXT
4130 R‘ETUPH

This module allows individual payments to be examined, together with
their associated data and, if necessary, to be deleted from the file.
Commentary

Line 4110: An example of the usefulness of IF statements when properly
combined with multi-statement lines. This whole section of eight
consecutive statements is only executed if theuser inputs DDD.

36

Lhapter < IManaging yourmoney

Testing Module2.1.6
You should now be able to delete items from the file.

MODULE 2.1.7

CATA FILES
sez-a REMAXEEEEEEE XL XL XL L XL XL LKA
230 MOTOR OHIAUDIO OHIERIMT!INFUT “FOSI
TICIH TAFPE THEHMH FRESS enter <MOTO IS oM
DU @m . MOTOR OFF
S£930 PRIMT IHPUT “FPLACE RECORDER IM CORR

IHPLIT CHTIC
0 =E97ve.c130

E07O MOTOR OH I=1 TO 19908 HEMT I
EOS0 OPEH L. "BAHKER"

E0SB FRIMTE—1 . TMEHTS

£100 FOR I=0 TO FPAYMEMHTS FRIMTE—1.A%<I .0
Z.ASCI L1 3. ACILO b ACT .1 5 HEXNT I

£1190 CLOSE€—1

Z120 RETLRH

£130 PCLEAR 1 - CLEAR 10000 LET FLAG=1 GOT
o =0ao

€140 OFER "I".,£—1.'"BAMHKER"

E150 IMPUTE—1 . FAYMEHNTS

G160 FOR I=9 To FAYMEMTS IMFUTE—-1.ASC I .M
».AL: T.1>. AT .O>, A< I . 1

E179 HEXT I

S1®0 CLOSE£—1

190 GOTO 1000

A standard data-file module.

Commentary

Line 6130: The use of the variable FLAG has already been discussed but it
is worth pointing out that the only reason that the initialisation module is
actually called is the loading of the month names into MONTHS. Other
than this it is often more economical simply to dimension the arrays in the
data-file module itself.

Testing Module2.1.7

You should now be able to input data, store it on tape and recall it for
subsequent use. If this module functions properly the program is ready for
use.

Summary

This straightforward program raises some interesting questions about the
degree of sophistication required to make a program useful. Inputting the
months during which a particular payment is to be made is, in some ways,
rather crude compared to specifying whether the payment is to be made
quarterly or annually or whatever and letting the program insert the
payment in the relevant months. Such an added facility would be easily
possible but it would add considerably to the length of the program and it
would reduce the degree of flexibility inherent in simply typing in the
months. When designing a program you will need to be constantly aware of

37

1he Working Dragon

thistension between what is worth doing automatically and what it is better
to allow the user to do — the answer may well vary from user to user but
complexity simply for the sake of it can be costly in terms of memory and
can actually reduce the usefulness of a program.

Going Further

1) Thedeletion module is extremely crude in that it only allows the user to
page through the items one by one. What about adding a facility which
would allow the user to specify a jump backwards or forwards in the file,
thus making it easier to access items towards the end of the file.

2) The program is set up on the basis that the financial year begins in
January. It would be more useful if the user could specify when the
financial year should begin and the program would then scan the entries
from that time to produce the balance carried forward in the printed
account. This would allow the user to keep accounts for the last three
months, say, even in January and February.

2.2 ACCOUNTANT

Thisprogram won’t actually cook thebooks for you, butit will make them
very much easier to keep and present them in a neat format whenever you
wish, with provision for single items, main headings and sub-headings in
the printing of the actual accounts.

MODULE 2.2.1

TODOD RN o o o A A A AR S A A A

7@1® REM FORMAT TITLES

TO2D R MK R O A A A A N A A

7O3® LET P2=14—INT<{LENI{F®>-2>

7040 PRINT ® 32%P1+P2,STRINGSCLENIF® >+2.
CHR®C 147 > >

7OSO PRINT ® 32%CP1+1>+P2,.CHRS®C 159>
7960 PRINT F®iCHR®C 135S >

7O7O PRINT @ 32%CP1+2>+P2.STRINGS<LENCFS$
>+2. CHR%< 1356 > >

7os® RETURN

Standard title format module.

MODULE 2.2.2

oA

ErMx

E570 REm BATAEIL

6920 REM ******)‘******ﬂ******
€038 AUDIO ON : NPUT “POSIT!ON T
APE. THEMN PREss Qﬂtcw. < MDTDR IS OND>' ;&
sose OTOR OFF : INPUT “"PLACE RECORDER INT
O CORRECT MODETHEN PRESS enter. s

€060 PRINT "1>SAVYE DATA".."2>L0AD DATA" '
INPUT "WHICH DO ¥0OU REQUIRE: " ;&

6078 ON Q SOTO 6099.6170

€988 RETURN

€090 MOTOR ON:FOR I=1 TO 10000:NEXT I
€188 OPEN"O". £-1."ACCOUNTS"

€120

€130 1

6140 PRINTE—1.A%CI . J>. A< J>
€150 NEXT .J.I:CLOSE£-1:RETURN

38

Chapter2 Managing your money

=170 OPEN "I".£—1."ACCOUNTS"
180 1

6190 INPUTE—1.C<I>

c200 J=& TO C<I>—1

£21©@ INPIUTE—1.A®C I, . J>. AT .
6220 NEXT J.I:CLOSE £—1~RETUPN

This is entered at this point in order to point out that the easiest way of
entering this, and the previous module, is simply toenteraprogramwhich
already contains them and then making any necessary changes to the
variables which are to be saved. Since you now have a program, Banker,
with both modules, you can save yourself considerabletime byloading that
and deleting up to line 5999 (DEL-5999).

Youmayalso findit anadvantage to have entered this particular module
first in that once you have successfully entered the modules which load
data into the main file, you will be in a position to save some data so that
when data is lost with the correction of mistakes or the entry of new lines
(unfortunate habit, that), youcansimplyreload fromtape rather thantype
it all in again.

MODULE 2.2.3

1998 REM
iaia REM mMENL

1e3e CLSxLET Fe="ACCOUNTANT" :LET P1=1:G0O

1240 PRINT:PPINT CCOMMANDS AVAILABLE -

1958 PRINT 15INPUT NEW HERDINGS'

196 PRINT " 2>CHANGE AMOUNTS-DELETE ITE
ms

1978 PRINT " 3>PRINT ACCOLNTS

198 PRINT 4>INXTIRLXSE RccOUNTS“

19S9® PRINT " S>DATA FIL

1108 PRINT " &>STOFP"

1118 PRINT: INPUT "WHICH DO YOU REQUIRE" ;
Z:CLsS

11208 IF Z<4 AND Z>® THEN GOSUB 2000

113@ CcL=

1149 ON Z GOSUB 2500.4000. 5000, 1500, 6000
s116@

1158 CLS:GOTO 1000

1160 CLS:LET F®="ACCOUNTANT" LET P1=6:G0
sUB veo

1170 END

Standard menu module.

MODULE 2.2.4

=i REI
S19 REM INITIALISE

sSZ2e REM

S3@ PCLEAR1 :CLERAR 10000
1S4 DIM H‘<2.1aa>,ﬁ<2 190>
1S5e GOTO 1©

Initialises program arrays. Note that this module must be called before
datafiles can beloaded fromtape since the data file module in this program
does not clear the memory and initialises the arrays.

39

The Working Dragon

MODULE 2.2.5

REPr
2©1® REM CREDIT-DEBIT

RE
2938 PRINT ® 7%32+3."D0 ¥Y0OU WANT: 1 >CRED

204® PRINT TABSC 16 > "2>DEBIT™
Z@®=S@ INPUT CD'LET CD=CD-—1:RETURN

Unlike the previous program, there are a number of functions in this
program which require to know whether the debit or credit side of the
accounts is being addressed. The input which specifies this is therefore
made a separate module.

Testing Module 2.2.5

Before moving on to the main body of the program youmay wish to check
thatthe modules entered so far are functioning correctly. The menu should
work for the data file option and should call up the present module for any
function from I to 3. Menu function 6 should also be available.

MODULE 2.2.6

RE
251© REM INPUT ITEMS
2528 REM
253@ LET Fs="NEW ITEMS":LET P1=1:GOosSuUug ¢

2540 PRINT "IS THE ITEM: 15>A SINGLE ITEM

2550 PRINT TABC13>"2> A MAIN HEADING"

2560 PRINT TABC13>"3> A SUB—HEADING"

2570 INPUT" @’ TO QUIT FUNCTION"; TYPE
I

2S5e IF TYPE=3 THEN GOTO 3S00

The input of items to the program is done under three types of heading:
main headings, sub-headings and single items. Their nature will be
explained under the sections that refer to them. The purpose of this module
is simply to have the user specify which is about to be input.

MODULE 2.2.7

3919 REN SINGLE ITEM OR MAIN

'?‘049 PRINT e Sx3=2.

302 TF Tvee< >Z THEMN Rz e

NPUT “AMDUNT FOR _ITEM: "

13%k3I2. s - XNPUT "IS THIS CO
-

INPUT “"NAME OF ITE

AN DR
R®<>"Y" THEN FOR I=S TD 13:PRINT

tKT+QE ELSE 1

30990 LET A®CCD.C<CD
310@ LET ACChH.CCCO >
© LET C<CD>=C<CD
® CLS:GOTO =2S20

40

Chapter 2 Managing your money

This module accepts the input of two different types of items, main
headings and singleitems. Main headingsaregeneral categories which will
have no amounts attached to them in the accounts, they will serve as
‘paragraph headings’ for a list of items which fall under that particular
heading. In household accounts, a main heading might be CAR and it
might be followed by sub-headings relating to tax, insurance, maintenance
etc. Singleitems areitems which are neither main headings nor items which
fall into the groups which the main headings label — they are ‘one off”
items.

Commentary

Line3050: Main headings do not haveamountsdirectly attached to themin
theaccounts.

Line 3070: If details entered are incorrect, this line clears only that part of
thescreen containing those details — otherwise we would havetoreturnto
the previous moduleto reprint the prompts on the top half of the screen.

Line 3080: Thethreetypesofitemarelabelled in thefile which containsthe
accounts by single characters which are tagged onto the front of the item
names (these charactersarenever printed, they arethere for the program’s
use only). The symbol for amain heading is * and that for a singleitemis a
space. Note how the use of ELSE saves us another IF statement.

Lines 3090—3110: Thenamesofitems (and theidentifyingtags) arestored
inthearray A%, onthecreditorthedebitsideaccordingtothevalueof CD.
Similarly the value attached to the item is stored in the array A. The
number of items on each side of the arrays is recorded in another array
named C. If you are observant you will have noted that nowhere did we
dimension an array called C. Here we are making use of the fact that
whenever an array is referred to (and the Dragon can tell an array is being
referred to because a subscript will be tagged onto the end of thename) the
Dragon assumes until it is told other wise that thearray has I0elements. So
if you want to use an array with less than 10 elements you don’t need to
declare it in a DIM statement.

Testing Module 2.2.7

You should now be able to input main headings and single items and main
headings. Youcannot easily display what you haveinput but youcan check
in direct mode that the item names have been stored, that they have the
correct indicator tag preceding them and that the correct value is attached
totheminthecorresponding element of the array A (the correct value fora
main heading is zero).

41

he Working Dragon

MODULE 2.2.8

ZaTe® REM A e e

3510 REM SUB_HEMD I N

asz2e PEM************************

3ISI\ PRINT @ S%x3I2. "' PUT “NAME OF MAI
s Q

3STO FOR_I=0 TO CCCD>—1:IF ASCCD. I ><>Q%
THEN HNEXT I:PRINT:PRINT “SORRY. HNO HEADI
NG OF THAT NAME. " :FOR I= 1 TO SO0 :NEXT:
RETURN

ASE0 LET PLACE=TI+1
23S0 PRINT @ 11%X32. cINPUT "NAME OF SU
B-HERADING : " ;Q®

3T8® PRINT ® 13%32.

INPUT “"AMOUNT FOR
“ARE THESE CORRECT <Y¥Y~-N
FDP I= S TO 13:PRIN

TO F'LHCE+1 STEP—1
3630 LET AMCCD.-. I >=A®M<CD, I—1

3640 LET ACCD. I >=A<CD. I -1

36D NEXT

3660 LET A®CCD.PLACE >=aw®

3E€70 LET ACCD.PLACE >=Q

36898 LET C<CD>=C<CD >+1

36906 CLS:GOTD =23SzZe

This module accepts the third category of item which the program
recognises — sub-headings.

Commentary

Lines 3530—3550: In this section the user first inputs the name of the
relevant main-heading and to this is added the identifying tag *, which is
howthemainheading will be recorded in the file. The program now works
through the filecomparing the specified main heading with those that are
actually stored already. Note that in checking that somethingispresentina
fileitisalwayseasier, in fact, to check that it is not. For this purpose all that
is needed is a one line loop as line 3550. If you remember what was said
earlier about the use of IF statements in miulti-statement lines you will
realise that the end of this loop will only be reached if the item being
searched foris not present. If the item is found then the program execution
will automatically default to the next line since the condition attached to
the IF statement has not been fulfilled.

Line 3560: If the main-heading is found, the variable PLACE is set to the
position following it in the file — this will be the position of the
sub-heading.

Lines 3620—3680: The items in the file, from position PLACE upwards,
areshifted by one space to make room for the next item and the new item is
inserted into position PLACE, with the relevant side of C being
incremented to record the new item.

42

Chapter 2 Managing your money

Testing Module2.2.8

As withthelastmodule, it isdifficult to test fully until thedisplay module is
entered, but you should be able to enter sub-headings, check that
main-headings are present and to examine in direct mode that the data has
been placed into the file correctly. If all seems well then it would be
advisable to save a specimen set of accounts onto tape to save time in
testing the display and deletion modules.

MODULE 2.2.9

SOOI 2 4 MR A A M A A A A A
S©10 REM PRINT ACCOUNTS

Seze REMX e e

S©39 IF CD=9 THEHN LET EDIT" ELSE L
ET PwlloERIT LET Fise Gosub Fooo
LE

I=0 TO CCCD>-1
Se7e LET TTOTAL=TTOTAL+ACCD. I >
SO98e IF LEFTS<ASCCD. I >, 1 >="®" THEN PRINT
>
0 MIDWC

* THEM PRINT

=776 18 Acco. 1 > THEN GOTO 1z

=1 QR IR LI PRIMN
T INT TABC18

S1 T ee.ee".ﬁ(co.x>

=1 F LEFT®< ASC< CD. I >. 1 >= THEMN LET =
TO L=STOTAL+ACCD. I >:PRIN

=1 T LEFT-<ﬁ-<CD,I+1;,1>=
-

S169 TRING®S 7., =~ >

S179

S180 EE£E£E£.£€" ; STOTAL;

S190 -

SZ200 IF INKEY®="'" THEN GOTO D206 ELSE HE
XT I

S210 PRINT TﬁB(25 SSTRING®C 7, n=n >y

RINT
S240 PRINT
=S2T0 INPUT
S260 RETLRN

£££. ££"; TTOTAL
FENTER’ TO QUIT:";GQ®

Most display modules for complex dataare themselves complex, and this
one is no exception. The reason for this is that rather than working on an
elegant and simpleset of principles whichcan be easily programmed into
one or two lines, such modules work with a mass of different rules and
qualifications which reflect the way in which you wish to transform the
data into a display — some placed here, some there, some inset, some on a
new line, all according to a variety of different conditions.

Commentary
Line 5030: The heading printed depends upon the value of CD.

Line 5070: Throughout the printing of the accounts, a running total of the
sums printed so far is stored in the variable TTOTAL.

43

The Working Dragon

Lines 5080—5090: If the item to be printed is a sub-heading (identifying tag
$) then itisinset two spaces before the name of the item is printed. Note the
use of the PRINT USING %o formatting command here: this prints the
string specified in a space as long as the total distance from the first % to
the second % (i.e. the number of spaces plus 2). If the string is too long it is
truncated, if it is too short it is padded out with spaces.

Line 5100: If the item is a main heading a spacing line is printed to make it
stand out.

Line 5120: The amounts associated with sub-totals are printed at column
18 on the screen, other amounts are printed at column 25.

Line5130: This PRINT USING command means that pence willalwaysbe
printed butthat the program canonlyhandle amountsupto £9,999.99. Its
effect on spacing is similar to the previous PRINT USING command
except that the padding added if the number is too short is added to the
beginning of the number being printed.

Line 5140: If the item being printed is a sub-heading, then the amount
associated with it is added to the variable STOTAL, which serves as a
record of the sum of the items under any one main heading.

Lines 5160—5180: At the end of the group represented by a main heading,
the sub-total is printed in the main column.

Line5200: Itemsareprintedone at atime inresponsetothe pressingof any
key.

Lines 5210—5240: When all items have been printed, the overall total for
the particular side of the accounts in question is printed underneath the
main column.

Testing Module 2.2.9

Recalling the set of data which youstored on tape, you should now beable
to see it presented in the format described above by calling this module.
Don’t forget to initialise the program before trying to load the data!

MODULE 2.2.10

= o e e e e

401 REM CHAMGES AND DELETIONS

aaz2a PEM**********************x‘*

463 FOR I=0G TO C<COD >—

o5e Ler fecethANGE OF DELETE" - LET Pi1~o
GOSURB _ Tooo

42Sa_IF LEFTSECASCCE, I 3.1 3<> %" THEM PRIN

ErE
foco BRINMT @ 128.

4070 IF LEFTECAS<CD.I>.13><>"%" THEMH FRIH
T 2 5, MIDSECASCCD. I >. = s

44

Chapter 2 Managing your money

4980 IF LEFTHCAS<CD.I>.15="%" THEN FRINT
R 128, MIDSCASCCD. I >.2 >,

4920 IF ACCD. I >=0 THEHN GOTO 4120

4192 PRINT :

2110 PRINT I

s120 PRINT = ITEM"

4138 PRIMNT T=CHANGE AMDLUNT '

4140 PRINT "> ZZZ ' =@UIT FLNCTION"

2158 PRINT > D0D’=DELETE ITEM"

162

a4170 N

4180 A4S0 RETLRN

a190 =)

4209 FOR J=18 TO 14:PRINT ® 132, """ HEXT

2218 PRINT @ 12432, "". INPUT “AMOUNT TO

BE ADCED - '

23220 PRIMT: INPUT IS THAT CORRECT < roN >

iR®

4232 FOR_J=11 TO 14 :FRINT ® J&32. "' :NEXT
4240 IF R$="H'" THEN GOTO 4210
3 =A7 Ch. I >+@

a0
4270 NEXT I:RETURN

Thepurpose of thismoduleis to allow the user toexamine, changeor delete
individual items. Once having entered an item, such as ‘mortgage’ in
domestic accounts, this module would be used to add any subsequent
payments (or to reduce the payments) rather than entering the item afresh
for each occurrence.

Commentary

Lines 4050—4110: The item is displayed, together with itsmain heading if it
is a sub-heading.

Lines 4200—4250: Changes to the amount associated with an item are
simply made by inputting the extra sum to be added (or subtracted) from
the existing amount.

Testing Module 2.2.10

You should now be able to display theitems in the fileone by one and to
amend the amounts associated with each.

MODULE 2.2.11

ATOD REPIRA A AN A AN A AN AN A AR AN

4519 REM DELETE ITE

asz20 REM**************** .****:&**

4530 LET PLACE=I:LET GROLP=

4540 IF LEFTSC =S PLACE >. Iocsmme THEN

GOTO 4S80

4550 LET GROLUP=O

4S50 LET GROUP=GROLIP+1

45?2 IF LEFTSCASCCD. FLACE+GROUF > 1 >="%"

THEN GOTO 4S50

488 FOR K=PLACE TO C<CD >-—Gs~cu |P—1

4590 LET RACCD. K >=A<CD. K+GROL

3280 LET Ascrb ik ohncrDb . RaCRouR 5

4510 HEXT K

4520 LET C<CD >=
]

C<CD >—~GROUF

The function of this module is to carry out the deletion of a particular item
when it is specified in the previous module.

45

e vworkig urdgon

Commentary

Lines 4530—4620: The reason this module is more complicated than other
deletion modules we have entered is represented by the variable GROUP,
whichisneeded torecord the number of items that haveto be deleted atany
one time. The reason that there may be more than one item to be deleted is
that the user may have specified the deletion of a main heading, in which
case all the sub-headings associated with that main heading are also to be
deleted.

Testing Module 2.2.11

If this module is successful in deleting items, including main headings and
all the associated sub-headings, then the program is correctly entered and
ready for use.

Summary

By now you should be becoming familiar with the techniques involved in
adding and deleting items to files without disturbing the overall
orderliness. What may have been new in this program is the sheer fiddliness
of correctly formatting large amounts of data on the screen. It is worth
reviewing the methods used before you continue, since in the next program
we shall be displaying far more complex data than anything met here.

Going Further

I) One useful extra facility would be a simple module to calculate and
perhaps even print the balance between the two sides of the account.

2) Asin the previous program, if you are going to want to store very large
numbers of items in this program then you will also want to change the
module which displays the items one by one, to allow a more rapid
movement through the file.

2.3 BUDGET

Finally in this trio of financial programs we turn to the most complex
program you will encounter in this book. Entitled Budget it is a powerful
and flexible financial tool which enables the user to plan finances over a 12
month period and to examine the consequences of ‘what. . .if* decisions
about income and expenditure. Intelligently used, it can provide some
surprising insights into a family’s finances over the year to come — quite
apart from illustrating the problems of working with large bodies of
numeric data. The arrays used by the programcontain some 650 separate
numeric values.

46

Chapter 2 Managing your money

MODULE 2.3.1

6008 REM¥¥

REM DATA FILES
COZO R E I 404 54 5 3 0 . S 5 3 S A A A
€930 AUDIO ON MOTOR OH: INPUJT “PDsrTrrxN T
APE THEHN PRESS enter <HMOTOR IS >

=
€840 IHPUT “PUT RECORDER INTO CORRECT MO
= = ;o

R ente
€00 PRINT “FILNCTIONS AYAILABSLE - . "1 >SAY
E DATA".."2>_0AD DATA" INPUT --WHICH oo
O REQUIRE ":0:0H 2 GOTO SO07e.e&27

1 TO 19908 HEXT I : 0P

(=
.INCDME(B I>. INCOMEC1.I>. S

5110 HEN
e120 pR‘INTE*l,rI(B) HNC 1>
=]

5130 FOR I=0 TO HC@>—1
&1a40 PPXNTﬁ-—x,PH\:mENT,(e 1>
€159 FOR J=& TO

S128 FRINTEC: PAYMENT @, 1. 4>
€170 HEST

€188 HEXT I

€198 FOR I=© TD Hd1>—1

e=zeo I PFWMENTs(1. 3

&27'® CLEAR S©ee : PCLEAR 1 LET FLAG=1:GO0TO

€280 OPEHN "I .£~1. " "BUDGET"
€290 INPUTE—1. ERed

INPIJTE—1<INCDME(B I>.INCOMES1.1I>,SU
>
INPUTE—!,-N(B) HNa 1>

=
1l PAYMENTRCc O, 1 >
TO

€270 INPUTE—1.PAYMENTCO. I. J>
&380 HE™T

&390 HEXT

€490 FOR I=0 TO H<15>—1

&41® INPLUTE—1.PAYMENTSC 1., I >

& 430 INPIJTE—l,PH.’MEIIYSf 1., X..3>

&40 NEVT I

€460 CLOSEE£—1

&470 FOR H=© TO 1 GOSUB 2T : HEXT

&€480 COTO 1000
Thelength of thisdata-file module should be sufficient to convince you
the complexity of the program. Budget, morethan any other program
this book, benefits from theearlysavmgof somedata to tide you over t|

innumerable pitfalls of entering a program as long as this.
MODULE 2.3.2

RE
@18 REM FORMAT TITLES:
7O20e REM* A P
7030 LET P2=14~—INTCLENCFE®>-2>
740 PRINT ® 2I2%P1+P2.,STRINGR(LENCF® >+2.

7OSO PRINT ® 2I2%<P1+1>+P2.CHRSC 150 >+F®+C
HR®C 150 >

TOEO PRINT ® 324CP1+2>+P2.STRINGSCLENCF=
>+2, 150 >

7O7e LET P2=0

7e8e RETURN

A standard title-formatting module.

of
in
he

47

1he Working Uragon

MODULE 2.3.3
3500 REM* T
3510 REM QUESTIONS
3520 REM* A
353 PRINT CSTRINGSZ32. "

3540 PRINT
FS5=0 INPLIT
2S60 PRINT

300 - A= AN

You may be struck at first sight by the similarity between this module and
the last and indeed the functions of the two are quite similar. This one,
instead of printing a decorative heading at some desired place on the
screen, prints a prompt, allows for its confirmation or otherwise and
returns the resultant input to the main program. Handling almost all of the
program’s requests for input by this one module saves scores of linesin the
main program.

Commentary

Lines 3530—3550: From these three lines it will be clear that three variables
are necessary for the proper functioning of this module: PI which is the
line on which the prompt is to be printed, P2 which is the position along the
line and P$, which is the actual prompt. The module automatically clears
theline on which the prompt is to be printed. In this program P2 is always
left at zero but there is no reason why this should be so if the module is used
in other programs.

Lines 3560—3590: Whatever is input by the user is redisplayed at the
bottom of the screen with a request for confirmation. Confirmation is
given by pressing ENTER with no character input. Inputting an actual
character is interpreted as meaning that the response to the prompt is not
confirmed, in which case the prompt is printed again.

Testing Module 2.3.3

Thismodulemay be tested on its own by defining P1 and P$ in direct mode
then entering GOTO 3500. P2 does not need to be defined.

MODULE 2.3.4

2 P05 0 4 S 5 2 2 4 0 S 2 AR

4 A A A A A
HOME BUDGET" LET P1=0. =

Zo
1940 PRINT FUNCTIDNS AVAILABLE : "

19S5 PRINT SINITIALI

1OE0 PRINT 2>REsET HYPOTHETICAL FIGURE
1970 PRINT * 33>DISPLAY MONTHLY ANALYSIS"
1988 PRINT " 4 >CHANGES'

1980 PRINT " 5 iNHEW BUDGET HEADINGS'

1120 PRINT " 6>DELETE BUDGET HEADING

48

Chapter 2 Managing your money

111©@ PRINT " 7O>RESET MONTH"

1120 PRINT " S>DATA FILES'

1130 PRIN v S LSTOP"

1140 PRINT: INFUT “lHICH DO vOI! REQUIRE *
PZCLS

e e e T e D T Z<>7 AND Z<>e
AND Z<>2 THEN GOTO

1160 ON Z GOoSuB 1519,?919,1999;199@,1999
. 1000, 4000, 6900 . 12320

1179 GOTO 1008

1129@ PRINT PRINT "1 REAL"

119@ INPUT "2 >H‘rF‘ﬁTHETIf‘HL DATA" ;H:CLS
1200 LET_ H=H—1:SCREEH ©O.

1210 ON Z—-2 GOIUS 2010. LB10.3250. sSe0 - GO
O 1eee

1220 GOTOo 10328

12230 CLS LET Fs="HOME BUDGET" : LET P1=7: G
osuUue veea

124@ END

A standard menu module with the addition of a provision to set a variable
called Haccording to whetherreal or hypothetical data isto bereferred to.
The data stored by this program is divided into two categories which are
entirely separate from one another, although data in the real side of the
arrayscan becopiedinto the other side. What this meansinpracticeis that
if the user wishes to enter some speculative data, e.g. ‘what would happen
ifincome weretorisein July by £500 p.a. and two newstanding orders were
to beenteredinto from September onwards, plus the purchase of anew TV
inMarch’, this can beentered into the hypothetical side of the array so that
the interaction of these decisions with existing commitments can be
examined, without corrupting existing data about confirmed plans for the
year ahead.

Commentary
Line 1190: The variable H is the sole indication that will be used by the

program as to whether real or hypothetical data is being worked with, and
is used to indicate either the 0 or | elements of the arrays.

Line 1200: Note the use of the value of H to reset the screen colour set asa
reminder of which type of data is being input or displayed.

MODULE 2.3.5

. RE
1%1@ REM SET UP REGULAR PAYMENTS

REM
1530 CLEARSOOQ: PCLEAR 1:LET FLAG=0
1540 DIM PAVMENTSC1 . 19 > MONTHLY< 1, 12 5. PA
YMENTS<1,19,11 %, PTOTALS<1.11>. BDEFICIT< 1
©11>. INCOME <1.113.SUPP<1.11 >, BALANCE? 1 .

11>
1S5 DATA " JANUARY " “FEBRURARY ™ . “"MARCH" . *
APRIL ™. “MAY . " JUNE" . “JULY " . "AUGUST" . “SEP
TEMBER " . "o TOBER - - MOV ERBER s - DECEMEE B
1S€@ DPIM MONTHSC 11 °
1970 FOR I=0 TO 11:READ MONTHSC<I >: NEXT
1S®@ IF FLAG=1 THEN GOTO &A230

152@ INFUT "HUMBER OF CURRENT MONTH: " MO
v T M o—1

16900 LET “r=mMO+11
1858 E5SLE 554 cosus azce coTo 1e3a

This module initialises thevarious arrays used by the program. It also loads
the array MONTHS with the names of the months of the year.

49

The Working Dragon

Commentary

Line 1580: Once againthe variable FLAG is used to determine whether this
module returns program execution to the main menu or to the data-file
module.

Line 1600: The variable Y is used to store the end of the current 12 month
period.

Testing Module 2.3.5

Provided that temporary RETURNS are placed at 4500 and 3260 you
should now be able to call up this module from the main menu. Having
initialised the program you should also be able to call up the data file
module to save the empty arrays, stop the program, re-RUN it and reload
theempty arrays. These tests will make use of four of the modules you have
entered so far.

MODULE 2.3.6

400 REM

CLS
4530 FRINT INPIJT SALARY AS FOLLOWS: *

IR K 1>11 THEN LET Ii=I1-12
MONTHSC 11 O Fm
= I +1—r0

4590 COSUB 3500

4600 LET INCOMEC H. I1 >=VAL <Q%

21610 PRINT @ S=#<I+1-MOI+LEN <P®>+1. INCO

LS
4640 PRINT ‘DTHER ﬁNTlcxpﬁ‘rED INCOME :
4650 FOR I=MDO TO

4660 LET
467 LET
4680 LET
4690 GOosSUBR 3IToo

47@®® LET SUPP<H. I1 >=VALOS

4718 PRINT @ 32%< I+1-MO ST e Pe o1 . SURPC
H.I1

arze NE

4730 l:osl_le 2_,913

arae cL

3728 ReETuen

TITIHAH

This module accepts inputs for monthly income figures under two
headings, main income and supplementary income.

Commentary

Line 4560: The purpose of this line is to take the value of the loop variable
I, which canvary from0to 22 (since MO canbe fromOto11)andto convert
that value into something in the range 0 to 11 i.e. something that will point
toan elementinoneofourarrays. Notethat this meansthat our arrays will
notrun from O to 11 representing the forthcoming 12 months, they will run

50

Chapter 2 Managing your money

from the number of the current month up to 11 and back via zero to the
number before the current month.

Lines 4570—4590: Note how flexible our use of Module 3 can be. Here the
promptusedis amonth nameand theline on which the promptisprintedis
determined by the variable I1.

Line 4600: The figure for main incomeis placed into the array INCOME.
Note that this array, like all the others, has two sides, numbered 0 and 1.
Thesside into which the data is placed will depend on the value of H. Inthe
present case, thismoduleis always called by the initialisation module and
only real data is input (i.e. the value of H is 0). In subsequent modules H
could be either 0 or 1 depending on whether the user has specified real or
hypothetical data.

Lines 4640—4720: The same process as above, but supplementary income
is input and stored in the array SUPP.

Testing Module 2.3.6

Provided that a temporary return is placed at 2500, you should be able to
enter details of income when the initialisation module is called from the
main menu. Youmay wish to confirmin direct mode that the figuresarein
fact stored from INCOME(0,0) to INCOME(0,11) and in the same
positions in SUPP.

MODULE 2.3.7

REM* 40+ *
FEM INPUT OF PAYMENTS

LET Fe="INPUT OF BILLS" LET Pl1=0: G0

-

ﬁale BRIMT "PRECECE HNAME OF ITEM WITH A”
0O HOT WANT IT RISGETE

HEABIMG < " ZZZ° TO @UIT !

=2
"ZZZ" THEN GOSUE 2T00: RETURH

CINPUT UNDER - " Qs
3RO LET HOHM>=HN<H>+1
3390 IF HIH>=20 THEHN LET HJH>=HNdH>—1 PRI
"HO MORE ROOM IN _PAYMENTS FILE
- TO S2006: HNEXT: RETURN
R4@@ LET PF!YMENT,(H; HZH >—1 >=Q=
3 TO

< ~
2422 LET IICF I Tis1a THE I1=I1—-12
3430 LET ra="AMOUNT FO FMONTHSS T1 >+ -

3450 GOSIIE 3IT3a
34£0 LET PAYMENTSCH,.N{H>—1.I1>=vAL < Q%>
2472 PRXNT @ 3I2%CI+1—M0>+1a4+L ENCMONTHSC I

I
GOSUER 2o GOTo 3282

This module accepts the input of payment headings and the payments
associated with them for the 12 months to come.

51

The Working Dragon

Commentary

Line 3310: This prompt refers to a later stage in the program where average
monthly payments will be calculated for each payment heading and
included in an average monthly budget. Attaching an asterisk to the front
of a payment heading means that it is excluded from this process and
treated as a one-off expenditure.

Line 3390: Only 20 payment headings are allowed for, though this is a
completely arbitrary figure and could be increased (within the limits of the
memory) if you wish.

Line 3400: The name of the payment heading is stored in one or other half
of the array PAYMENTS$ — which half is determined by the value of H.

Lines 3410— 3480: For each payment heading, 12 monthly payments are
requested and placed onto one or other side of the array PAYMENTS.
You may note that this is a three-dimensional array: the first dimension
determines whether we are dealing with real or hypothetical data, the
second dimension refers to the payment number and the third dimension
refers to the month.

Testing Module 2.3.7

Provided that there is still a temporary line 2500 RETURN, you should
now be able to input payment headings and their associated payments,
verifying in direct mode that they have been placed into the correct
positions in PAYMENTS$ and PAYMENTS.

MODULE 2.3.8

IF LEFTSC<PAYMENTSIH. I 3.1 d="¥%" THEN
G
oR
MENTSCH. T

2580 LET MONTHLY<H. I >=BUDGET 12

LET TOEH>=T<HI+MONTHLY<H. I >

HNE>T I

LET I LET cum=e

zZs2e Fo L

2228 [E% xx=1+x2*r I>11 >

2640 LET PTOTALSCKH. I1 >=0

ZESO® FOR J=0 TO HN<H>—1 LET PTOTALSC<H.TI1 >
TOTALSCH, I1 >+FAYMENTSCH. J.T1 > :NEXT

€@ LET TTOTAL= TTOTRL»PTOTRL:(H.I1>

TO IF LEFTS< PAYMENTS
Toen FroTaAl LT ToT AL CrArmE TS

11 LET BUDSET=BUDGET+PAY
5

HNE>T
LET BDEFICITCH. I1>=TCH>*< I—MO+1>~TT

LET -—l_xm—cn IM+ITHCOMEC H. I1 >+SUPP<H, I1 >
~PTOTRI_€W H. T1

271 LET BALAMCECH. 11 >=cuUmM

2720 HEMT I RETURHN

52

Chapter 2 Managing your money

This fairly short moduleisadifficult one to follow until you have had some
experience of the program in practice. The purpose of the module is to
perform the calculations which the program is designed to provide, on the
basis of the income and expenditure figures supplied by the user. The
functions and thearrays will bedescribed in full but you may wish toreturn
tothemlater whenyouhaveseenthefiguresdisplayed aftertheentryofthe
next module.

Commentary

Lines 2530-2600: This loop calculates average monthly payments for
every payment heading except for those preceded by anasterisk. The figure
is such that over the year it will be sufficient to cover all payments under
that heading. For regular monthly payments, this figure will bethe same as
the payment itself. This budget figure is then stored in the array
MONTHLY, in a position corresponding to that of the payment in the
array PAYMENTS. In addition, the budget figure for each payment
headingis added to what is already contained in one or other of the halves
of thetwo element array T thus making up a total of theindividual budget
figures. If there are no payment headings preceded by an asterisk, the
eventual figurein T will be 1/12 of the total of all payments overthe year.

Lines 2620~2720: Having calculated the budget figures, the module now
proceeds to perform a number of calculations for each month, as follows:

Line 2650: The total of the payments falling during the month is
accumulated in the relevant element of the array PTOTALS.

Line 2660: This total monthly payment is itself accumulated over the 12
months in the variable TTOTAL.

Line 2670: From TTOTAL is subtracted the amount for any payment
which has been marked by the user with an asterisk. TTOTAL now
contains the accumulated total of all payments since the beginning of the
12 month period which were included in the budgeting calculation.

Line 2690: An element in the array BDEFICIT is now set equal to the
difference between the actual amount set aside in the budget and the total
of payments which the budget is meant to be covering. The element in
BDEFICIT corresponding to any particular month will indicate the extent
to which theaverage monthly budget is ahead or behind the items included
in the budget. If all the budgeted items are due for payment in the first
month of the period, then the budget will be in deficit until the last month
oftheyear. If all the budgeted items are not due for payment until the last
month of the period then the budget will be in surplus for every month up
to the last.

53

The Working Dragon

Lines 2700—-2710: The relevant element of the array BALANCE is set
equal to the cumulative difference between total income and total
expenditure.

Testing Module 2.3.8

If youhavenot already done so, it would be best tosavesomedata before
testing this module. Re-inserting your temporary RETURN at line 2500

wi
pa

llallowyou toinput dataforincomeand payment headings (one or two
yments are quite sufficient at present). Having done that, the only test

that isreally practical at the present time is to allow this module to be called

an
en
be

d to discover any syntax errors that may have crept into what you have
tered. For overall checking of the module’s functions it is probably
tter to wait until the next module is entered and the figures can be

displayed.

MODULE 2.3.9

54

Z21© REM DISPLAY FIGURES

2830 LET F CPAYMENTS (LET Pl1=1 GOSL® 70

oo
2040 LET P®="MONTH TO START" LET P1=35: GO
2050 _FOR _I=0 TO 11:.IF Q&< >MONTH®SC I > THEM

o
206@ CLS: LET M1=I:IF MO—M1—12%<M1>MO-1 3
<4 THEN LET Mi1=MO—9—12%<MOJSD>
2870 PRINT “MOMTH :FOR J=H1TDM*—3 1ad
2908 TRERL 1T T T e MR LT >
5321 SHEXT JBRINT cHE®C xss).xCHP‘(s/;FH
R®C 139 > ¢« B " ; CHR®C 155
2o PRINT STPING.(3.;,cHR.< 159> 5
2090 FOR I=0 TO N<H>—
210® IF I<>11 THEN 2oto 2130
2110 PRINT @ 13X 32‘""x1NPLJT CCENTERS TO
CLS AND CONT INUE ' ; Qs
2120 FOR_J=2 TO 14:PRINT ® J%x32."": NENT:
PRINT @ 2%32. """
2130 PRINT USING "% HU L FAYMENT S H

2140 FOR J=M1 TO M1+3
2150 PRINT CHR®C 13593 >,

2160 IF INT<PAYMENTSC<H.I.J+12%<.1>1
1000 THEN PRINT "*%%";ELSE PRINT i
E£€£") INTC PﬁYMENTS{ H. I. J+12%< 1>11 >>
2170 NEXT

218©@ PRINT JeTRINGS 3. CHREC 159 55
2190 PRINT USING "“"££€£": INT < MONTHLY<H. I >

v
"y
v
av

2200 PRINT LSHEe< 159>

2210 NEXT

2220 PPINT STRING®C 32, CHR® 1353 > >:
2230 INPUT "PRESS ENTER FOR F!NF!L Sysh =t
2240 FOR I=2 TO 14 -PRINT @ Ix E:<T
2250 PRINT ® &4, "TOTAL"

2260 PRINT "BUDGET". . "BUDG.EBAL.".. "FAY",
..U TOTAL INC®", . "CASH BAL. ..

M1 TO M1+=
11x1»12>«< I>11>

IZ=3+a%< I-M1 >

2320 ETOTALSIHLITL ool THEL [BETHT. & sl
1=, Chmec 157 S ELSE FRINT ® Ea+T2 rHRe: 155
=

2319 F‘F’INT USING “£££". INTCARS: PTOITAL
2>

23.‘:-3 IE _TiH><@ THEN PEINT ® SS+Iz.CHR®<1
CHRSC 155 5

3 P IMTS ABRSC T H > » 0
2340 IF EBDEFICITC H‘Il »e@ THEH FRINT ® 1

Chapter 2 Managing your money

S+ I2.CHRSC 191 > ELSE FRINT 2 1ZS+12.CHR®

159>

23TO PRINT USING "£££"; INT<C ABS<BOEFTCTTC
H,I1>>>

2260 PRINT 2 160+ IZ.CHRS< 159>

25370 PRINT USIHNG “£££"; LTHTS IHCOOMECH. T1 > >

R$< 159 >
Y IHTE SUEFC H. T 50
HT @ 224.12. CHRSC 159>
2410 PRINT UJSIHNG "£££"; INTS THNCOMECH . T1 >+
1>
IN

>
COMECH. I1>+SUFFCH, 11 >~-PTOTALSY

H.TI1><® THEH PRINT ® 2Tc+I2,CHR®< 131 >:EL
SE _PRINT ® 2S5+12.CHRSC 159 >
2430 PRINT USING “£££": INT< ABRS< TNCOAMES M .

Il 2LSYUPPIH, T1 5 PTOTALSIH. 11 >>
IF BALANCECH.I1><& THEN FRINT
»12 CHR=< 191 >, ELSE PRINT ® 288+I2. C’HPG

1

=

2320 PRINT USINHG “£££": IHTABSC BALANCES H

LI1>>>

2450 HET

2470 PRINT STRIHNGS: 3&. CHR=< 1359 > 5

Za=0 INPUT ‘rCIU [1ISH 7o SEE FIGURES
GAIHN <N >

2490 IF Q=< >tvr THEN RETURN ELSE CLS:GoT

o zo7o

We noted in thelast program that display modules for complex data are
themselves likely to be complex, and this, the largest module in the
program, is no exception. Its purpose is to display, in two separate tables,
thedetails of payments entered so far, the income figures and the analysis
which was performed in the course of running the last module.

Commentary

Line 2060: The desired starting month having been checked, this line
ensures that the table never starts less than three months before the final
month of the 12 month period, since this would render the resulting table
meaningless.

Line 2070: The first three letters of the four months to be covered are
printed across the top of the screen.

Lines 2090—2210: In this loop a series of lines are printed, each containing
apayment heading taken from PAYMENTS, the associated payments for
the four months in question taken from PAYMENTS and the monthly
budget figure for that heading, taken from MONTHLY. Note that the
table is formatted on the basis that the highest figure for a monthly
payment will be £999. If this isexceeded, *** is printed to remind the user
that this figure cannot be accurately represented in the table. Note also the
use of a loop to clear a part of the screen in the event that the number of
payments exceeds the capacity of a single screen.

Lines 2270—2460: For each of the four months in question, the following
figures are printed in the relevant column:

a) the total paymentsin each month (2300—-2310)

b) the total of budget payments for the month (2320-2330)

55

The Working Dragon

¢) the difference between the budget figure and the actual payments it is
meant to cover (2340-2350)

d) main income (2370)

e) supplementary income (2390)

f) the balance of income over expenditure for the month (2420—-2430)
g) the cumulative balance of income over expenditure since the beginning
of the 12 month period (244 0— 2450).

You will note that the position of each item on the line is dictated by the
variable 12, based upon the value of the loop variable 1. This means that in
the case of figures exceeding £999, instead of not beingable to print them
without disrupting the orderliness of the table, they are printed with a
preceding % to show that they are truncated, followed by the first two
digits. This flag is automatically provided by the Dragon as a result of our
employing the PRINT USING “‘ # # #” format. Note also that negative
balances are indicated by the setting of the square constituting the wall of
the column in front of the item to red (CHR$(191)) rather than yellow
(CHR$(159)).

Testing Module 2.3.9

Provided that you have recorded a valid set of data, you are now in a
position to test this module by loading the data and calling up this module.
You should be faced with an orderly table of figures as described in the
commentary above. If not, at least you have the recorded data to reduce
the tedium of subsequent tests.

MODULE 2.3.10

DOBANRECTE kot bk ok

F@1@ REM SET UP SHADOW ARRAYWS
ze2e PEM*****#xt**t**t**#xt**t**
1 h=Tce

=)
EAVMMENT®C 1. I >=PAYMENTSC O, I >
MONTHLY< 1. I >=MONTHLYW< @, T

J=e TO

FAYMENTSC 1.
PTOTALSC< . o)
BOEFICITC

| >=PAYMENTSCO. I ..J>
TOTALS: &, J
BOEFICITCO . >
NCOME<® . J >

UFFPCD.) >
aFu_Fuu:E(1. A>~BALAMHCEC®. J>

DET NP1 Senc @
LET H=1
RETIURN

Having entered what is, to all intents and purposes a working program, we
now go on to add some features which add to the flexibility of our tool.
This module, for instance, allows the user to reset the hypothetical side of
the table to the data in the real side. This is simply done by copying from
one side to the other. Note that calling this module results in the loss of any
hypothetical data which is not also present on the real side of the arrays.

56

Chapter 2 Managing your money

Testing Module 2.3.10

Having entered some hypothetical data using menu function S, you are
now in a position toreset the hypothetical side of the arrays to the parallel
real set of data, regardless of whether there are more or less items in the real
side.

MODULE 2.3.11

ST R P 0 2 2 0 0 00 00 0 0 0 0 0 00 0 0004

=S10 REM DELETE BUDGET HEAD

ISTS20 R P08 0 8 O 8 0 000 0 0 0 0 8 O O

SS3IO LET Ps="HAME OF ITEM TO BE DELETED"
CLET P1=1: GOSUB 23T00

SS40 FOR I=0 TO HCH>®—1'IF QS<>PAYMENTECH
I THEHN HEXT ILET FS="ITEM HOT FOLUND"
LET P1=10: COSIUB 7000 FOR I=1 TO S200 : HEM
T: RETURHN

SSSO LET HCHD>=HNH

SSEQ FOR J=1 TOQ H(H,—l

SS7O LET PAYMENTSCH. JO5=PAYMENTS H. 1+1 >
SS20 FOR K= TO 11

SSSe LET PAYMEMTSCH. L K >=PAYMENTSC H . I+1 .
<>

SE00 HEXT n<
SE610 MNEXT

sc20 v—osuB 2z10
S520 RETURHN

This straightforward module allows the user to specify a payment heading
which, if it is found to be present in the file of payments, is deleted.

Testing Module 2.3.11
You should now be able to delete anitem from either side of the payments
file.

MODULE 2.3.12

TOOD R MH ¥ R R R A A RO A

S0Se FRIHT 1 >CHAHGE éxlcTIHr" _EBUDCET HE
AGC" . " 23CHANGE MAIN INCOME 2ROCHAMGE A

=) .
PHE=LIHICH DO YOl REQUIIFE" LET P
oo

tTHEM e Si13e
DR HBE RS THEN GosSue maza

0
Q
\’i

HNAME OF BUDGETARY HEADING T
COSUR 350

E IF Q%<>FPAVMEHTSH
I:LET F#="HND HEF!DINf oF TH
=1Z2 ZOSUER TO20 I=1 TO

Ll
[=1=]
70 LET Ps~' HEL FIGURE OR “Z° TO LEAYE"
ET =

=120 FOR I=MD ToO ¥

5190 LET I1=I+12%<I>11 >

S=09 PRIMT ® 32%C ESoPEEICR IR T1>

S210 PRIHT TAB< 10 &

SE220 FRIMT USIHNG -££££ ££" : PAYMENTSCH . & .

I1>

5230 CoOsSUE =soo

5232 IFE @E- Z THEH COTO S230

SZS0 LET FAYMEHTSIH. B L cas

SEEO FRIMT ® =22%C I Mo .$1'-"1-

57

1he Working Dragon

SZ27@ FRINT USING "“"££££.€£" -FAYMENTSCH. B,
T2,
S22 PRINT " >"

S300 GOTUR 2S00
531e RETURH
S320 I HE— 20 THER FRINT CMAIN THOCmE "

SUPFLEMEHTARY INCOME’
FIGURE OR -~ Z° TN i €AW "

>11 >
CT-MO+1 > MONTH®SC T >

THEN ppiNY INCOMECH.I15> E
SUFFCH. I 1

Sa1e IF as= =" THEN GOTO S460

5422 IF HEeo2t THEN LET THNCOMECH. T1>=vAL

L3232 ELZE _LET suppcH.
= <

* 1m0
5330 PRINT LISIHE “EEfe. S5 cwALS s
b

ExT 1
S47@ RETURH

The purpose of this module is to allow the user to specify changes to any
figure input for payments, main income or supplementary income.

Commentary

Lines 5180—-5290: In this section the payments stored under a particular
payment heading are displayed one by one. To leave a value unchanged,
the usermust input Z; to changea valueit is only necessaryto input the new
value. Note the usefulness of our prompt module here, since the prompt
itself can be defined outside the loop and used for each repetition of the
loop without further definition.

Lines 5320—5460: Throughout this section of the program the array to be
addressed (either INCOME or SUPP) is determined by H$ — this saves
considerable space over having a separate section for each income type,
though the section could be even shorter if the two types of income were
contained in separate halves of the same array.

Testing Module 2.3.12

You should now be able to change any of the data which you have
previously input.

MODULE 2.3.13

220D RErbcobo bR A
ao12 PEM REGISTER MON

aozo
2858 CET R R T I T e 2 . cinsLie
oo

440 MONTH IS ITY:LET P1-=T:
GOSUB =

o
a4ose IF Qs-m HTHS< MO > THEN FETURH
=] =a IF QB >MONTHSC T 5 T,HEN
NE>T I cn.s FRINT @ S%3I2. "THERE MUST
SOME MI=TAKE. DON’ T KHOW OF A MCINT
H SAaLLED LGS TcBT0 a5

58

Lhapter « vignayiny yuur invney

4090 FOR I=MO TQ M2—

4190 LET I1=I+12%<I>110>

4119 CLS

4120 LET F$="LUPDATE":LET P1=0. GOSLIE 7009
4130 NT "FLEMSE INF’I IT MAOUNTS FOR HNE>
T LonTH=< 11 >

4130 FOR J-0 TO HN<a>—1

4159 LET P1=S

dlee LET Ps-—Pav mEn'rsr DL e e STRE O PAY
MENTS<2. J, 115

Hive Gosné tsso

41m0 MENTS< 9. 1, 11 >=vAL <= >

4190

az00 UMAIN IHCOME <+ STREC TNCOMEC
2. 11 2 =7 . GosSuEs 3S0a

421@ LET INCDME< @.115=vAL < @m>

az CACB T T I OAL. TNCOME < " +STRE <
= . [1=% COSUE 3T
4230 LET SUFFC@. 11 >=Vv'mL < >

4240 HNERT
A2SS LET MO=M2+12%< ME>11 2 LET ¥=M10+11 LE

4269 Gn:\on- 2500 GOSUR 3010 RETURN

Our final module is one which allows the user to avoid the necessity to
make piecemeal changes every time the month changes. The function of
the module is to delete the dataforany months which the user defines as
past and to request inputs under each payment head and for the two
income types for all the months necessary to make up a 12 month period
from the new current month.

Commentary

Line 4090: This loop represents the months from the previous current
month (MO) to the new month which has just been input, but one year
ahead i.e. if the program has not been used for two months and it is
updated from January to March, it will request inputs for next January
and February.

Lines 4140—4190: In this loop, all the payment headings are presented for
updating. Note that the variable H is not used to define which part of the
arrayssince in resetting the data it isonly the real side of the arrays which is
addressed. At the end of this module a call is made to the module which
resets the hypothetical arrays — this may be omitted provided that it is
remembered that the hypothetical arrays will now contain out of date
information.

Lines 4200-4230: Main income and supplementary income are updated.

Line 4250: MO is set equal to the current month, reduced so that it falls into
the range 0—11 if necessary.

Testing Module 2.3.13

Youshould now be abletoupdate the program one or more months and be
prompted to give the necessary information to accomplish this. If this
module functions correctly the program is ready for use.

59

e WUIRINY LiayUid

Summary

This long program is a powerful tool, properly used, although it takes
some practiceto get the most out of it. Taken seriously it can give you some
surprising information about the state of your finances throughout the
year — when things will be tight and when there might be a bit to spread
around, how payments could be re-arranged to ensure a little more at
Christmas or for holidays, what might be the effect overall of a new
commitment or of increased income.

Remember, however, that this book is intended to set your Dragon to
work for you. If you have successfully overcome the problems of
debugging this program then there is no reason why yov should not go on
to adapt it to other uses which require the flexible input and manipulation
of data, together with clear presentation and the possibility of running two
parallel sets of information if desired. Simple changes to Module 8 could
lead to a very different type of program using almost the same arrays but
calculating something entirely different. The Dragon is yours, and so is the
confidence you have gained in entering this program. The programiitself is
only a foundation for putting your Dragon and your confidence to work.

Going Further

1) The program would be more flexible if the user had the option of
copying the hypothetical datainto the realside of the arrays. If you think
about it that should only involve a very small change in the program.

2) Ashinted in thecommentary on Module 12, real savingsin thelength of
this program could be made by declaring one more complex array and
inputtingdata to the various parts of the array according to asmall number
of new variables. One place to start might be in combining main and
supplementary income into one array.

3) At the moment, the user has to work through the whole 12 monthly
payments, even if only one is to be changed. How difficult would it be to
add an escape from this process, or even make it possible to access a single
month’s payment on command?

CHAPTER 3

Drawing on the Dragon

Aftertherigoursofthelast programitis with asighofreliefthat we turn to
the topic of the Dragon’s excellent graphics capabilities. I should hasten to
add that this chapter is in no way intended to be exhaustive, for the
Dragon’s capabilities in this field could (and no doubt will) be the subject
of a book in their own right. Nevertheless, in this chapter we shall tackle
such areasasthe creation and saving of simple pictures or maps for use by
later programs, the drawing of geometric shapes, the saving of screen
memory on tape and the design of complex patterns up to 10000* 10000
pixels.

The programs you will find in this chapter include Artist, a text screen
graphics tool; Tangrams, a program which allows you to play the ancient
Chinese shape game; Doodle, which allows the owners of Dragon joysticks
toturn their screen into a sketch pad and Designer, a sophisticated tool for
the drawing of large-scale plans.

3.1 ARTIST

Whileitistruethatthehigh-resolution graphics capabilities of the Dragon
aresome of the finest to be found in any microcomputer on the market, it
should notbe forgotten that thereis also auseful set of graphicscharacters
availablein the text mode. Indeed, given the difficulty of placing text and
high-resolution graphics on the screen at the same time, there are many
tasks which, unless they can be accomplished with the low resolution
graphics characters, are not going to be accomplished at all.

The purpose of the present program, apart from giving you the ability,
for the sheer fun ofit, to draw multi-coloured pictures on your screen, is to
actasa feeder fortwolaterprogramsin this book which require designs as
part of their data and indeed, to provide easily recallable designs for
programs of your own which might benefit from the drawing of one or two
simple pictures.

MODULE 3.1.1

1000 RE
1210 REM INITIALISE
1920 REM
1930 DIM CORNERC3>:CLSO:FOKEC 1024+14%32 >

19040 LET X=16:LET ¥Y=2

This module initialises the screen display for the subsequent modules.

61

Jne Worning Jragorn

Commentary

Line 1030: In this program we shall be moving a cursor around the screen
and using a second cursor, on the 15th line of the display, to indicate the
graphics character currently in use. In both cases this is more conveniently
done by POKEing the character into the screen memory than by printing
onto the screen. The POKE command has the effect of placing a number
specified in the command into a specified memory location. In our case the
memory location chosen will be that part of the Dragon’s memory which is
used to store the contents of the screen. Any number POKEd there will be
interpreted as the character having that ASCII code (see Appendix A of the
Dragon manual). As a result the chosen character will appear on the
screen. All such POKEing will begin at a base of 1024, which is the first
location of the memory for the screen in text mode and to this base will be
added anumber between 0 and S11, representing the number of locations
on the text screen. In this particular case, having cleared the screen and set
it black, the POKE command places a white V on the 15th line for later use
as a cursor.

Line 1040: X and Y represent the co-ordinates of the main cursor on the
32*16 text screen.

Testing Module 3.1.1

Thescreen should be set to black and a green V should appear on the 15th
line of the display.

MODULE 3.1.2
1S90 RE
151® REM CURSOR MOVE
1S2e REr
1S40 FOR I=0 TO 15:POKEC1024+32%1S+2%1 >.
<128+1I>:POKES 1024+32%X1S+2%1+1 >, 175 : NEXT
1SS0 LET TH=INKEY®:IF T®<>"" THEN GOTO 2
230
1S P=PEEK < 1024+Y*32+X

LET
1570 FPOKEC 1BZa+rid2+x>. 188, F3r 1=1 To 2=
1599 POKEC 1924+Y%32+%>.P:FOR I=1 TO 25
Ex<T
Y558 coto 1sse

The main purpose of this module is to provide a flashing cursor at the
co-ordinates contained in X and Y, until such time as the user inputs a
command.

Commentary

Line 1540: Re-examination of Appendix A will serve to remind you thatthe
Dragonhas aset of 128 low resolution graphics characters, representing 16
basic characterstimes the eight possible colours availablein this mode. The
purpose of this line is to display across the bottom of the screen one

62

Lllapiel g rawilly On trie Lrayon

complete set of the characters in the colour green. These will later be used
to select the character to be POKEd onto the screen.

Lines 1550—1590: This short module bears some close study if you have
not come across anything similar before since, in some form or other it is
found in many of the subsequent programs of this book and will find its
way into many of the programs you will go on to write for yourself. Its
purpose is first of all to provide a waiting state, during which time a
flashing cursor will be displayed on the screen.

Line 1550: This line uses the extremely useful INKEY$ function to detect
whether the user has made any input to the program. Unlike INPUT,
whichrequires the user to pressENTERbeforeaninputis recognised, the
INKEY$ function constantly scans the whole of the keyboard to see
whether a keyis being depressed and, if it finds one that s, itislabelledasa
string called INKEYS$. If no key is being depressed then INKEY$ is simply
an empty string or '’’’ in Basic (note that there is no space between these
two quotationmarks). It is usual to set another string — I always use T$ —
equal to INKEY$ before going onto use it, for the simplereason that by the
time subsequent program lines have been reached it may well be that
INKEYS$ will have changed due to the finger being lifted from the key.

Line 1560: Paralleltothe POKE command is PEEK, whichsimplylooks at
a particular memory location and returns thenumberwhichis to be found
there. It is used here since when we move our cursor around in the later
stagesof the program we do not wish it to obliterate any parts of the design
we have built up which it passes across. Accordingly, the original contents
of the screen location where the cursor is to flash are first placed into the
variable P.

Lines 1570—1580: Thesetwo lines provide a single flash, onand off, of the
cursor. In the first line the code value of an asterisk is POKEd into the
screen location specified by X and Y. After a short pause, the original
character, whose code value is stored in the variable P, is replaced there.
The two short loops at the end of the lines are there to make the flashing
slow enough to be visible as a regular on-off rhythm.

Line 1590: This cycle is repeated for as long as a key is not depressed.

63

the Working Uragon

Testing Module 3.1.2

A flashing asterisk should appear towards the centre of the screen.
Pressing any key should result in an undefined line error.

MODULE3.1.3

zooe RE *
2210 PEM EDIT CDMMRNDS

A A A A
2838 Cevrxz ><-<Y.—CHP.<9>>+<Y‘=I‘HP.(3—)‘) [

237 & HEN POKE <1
1°8+Y1/2016*VRL<
EN POKE < 1024+32%Y+3 5.1
IHEN cosye 3ooa:-SoTo 1540
oRr ¢ THEN GOSUB 2530
THEN Eosus | 3060:GOTO 1548
THEN GOSUB 3520

The purpose of this module is to decide what action totake on the basis of
thekey which theuserhas depressed.

Commentary

Lines 2030—2040: In order to understand these two lines you must first
know something of the way in which the Dragon understands the truth or
falsity of conditions — expressionslike A=B or X > Y. Try entering the
following lines:

9999 INPUT X: IF X THEN PRINT ‘X’

10000 GOTO 9999

Running these two lines will reveal that the Dragon only considers the IF
statement to have been fulfilled if the value input for X is not zero. This is
animportantlesson — for the Dragon, true meanssimplynotequal to zero
and false meansequalto zero. How does that apply to a condition such as
X=Y?

The answer is that X =Y is interpreted in exactly the same way: if X is
equalto Y thentheexpressionis given a value (actually — I) and if X is not
equal to Y the expression is given a value of zero. What this means is that
such conditions can actually be used as variables in the course of a
program, even though they can only have two possible values, 0 and — 1.
That is exactly what happens in these two lines. The value of the four
conditions is used to alter the variables X and Y if, and only if, one of the
arrowed keys on the Dragon keyboard has been depressed (the character
codes referred to in the four conditions are those of the right, left, down
and up arrows respectively). If one of those keys has been depressed, then
one and only one of these conditions will have a value of —1,the others
having a value of zero. After this alteration to the values of one or other of
the co-ordinates, thevaluesof the four conditions are again used to check
that neither X nor Y have passed out of the normal bounds of the 32*14

64

Chapter 3 Drawing on the Dragon

screen available to the cursor. If X, for instance, is greater than 31, it will
automatically be reduced by I by the first condition of the second
statement in line 2030. Remember not to be confused by the seemingly
contradictory + and — signs — a condition is — 1 if it is true, not 1.

Lines 2060~2110: The key depressed need not, of course, have been one of
thearrowed keys, in which case T$ (the key depressed) may activate one of
the lines in this section which either perform a direct act or allocate
program execution to another module.

Line 2060: We have already printed a cursor and a line of graphics
charactersat the bottom of the screen. When that cursor is moved the value
of its position on the 15th line of the display will be held in the variable YI.
Y1 will alsobe the value of the graphics character pointed to (above a base
of 128). What this line does is to POKE a graphics character in a colour
corresponding to one of the colour codes between 0 and 7 onto the screen at
a location specified by the position of the cursor. This is done in response to
any input between 0 and 7.

Line 2070: Following from inputs of 0 to 7, input of 8 will result in the
erasure of any character present in the cursor position.

Line 2080: Pressing # allows the user to define one corner of a rectangular
area on the screen which can later be saved on tape. This will be explained
later.

Line 2090: In the event that the key < or > is pressed the second cursor is
moved — this will be explained later.

Line 2100: Pressing of S will result in a defined area of the screen being
saved to tape.

Line 2110: Pressing M will also result in the screen display being saved, but
in a different format.

Line 2120: If the key depressed is none of theabove, the program execution
simply returns to the flashing cursor.

65

The Working Dragon

Testing Module 3.1.3

You should now be ableto move the cursor around thescreen, though none
of the other program functions is yet available.

MODULE 3.1 4

2378 REm Chooae EhmRmeTER

2T20 REM¥X

2339 POKE 1024+1i4x32

2540 LET vwimvY1—2%< T
C1=w1-24<¥Y1<D >+2H Y1 >3O >

2559 FOKE< 1024+14%32+Y1 >.22

2560 RETURH

The purpose of this module is to allow the user to select a graphics
character for POKEing onto the screen.

Commentary

Lines 2530—-2550: If you have understood the previous cursor move
module then you will see that this is a simplified version (since this second
cursor moves only along the line, not up and down. Notice that here the
valueof the conditionsemployed are multiplied by 2 since the cursor moves
in 2-space steps. As mentioned before, the value of YI, from 0 to 15, also
corresponds tothevalue of the graphics character it is pointing to (+ 128).

Testing Module 3.1.4

You should now be able toselect a graphics character which can be placed
onto the screen in any one of eight colours by subsequently pressing a key
from O to 7. Pressing 8 should erase the character over which the flashing
cursor has been placed. Note that the character placed on the screen will
not be visible until the cursor has been moved from that position.

MODULE3.1.5
2000
2010 REM SAVE DESIG
2020 PEM****»’*»’t*»’tt***»’*w******
Zo30 S=INKEY®: IF THEN GOTO
3230

3942 IF T1$>"0@" AND T1%w<" 3" THEN LET COR

300 1F CORNERC @ >>CORNER: 2 >-2 OR CORMNERC
1 3>CORMERC 3 >—2 THEHN PRINT ® 15%32. " "RECTA
HNGLE IMPROPERLY DEFINED. "; FOR I=1 TO 1©
2o : NE>'T RETURN

2070 < CORMNERC 2 >-CORHNERC © >~ 1 >#< CORNERC
3>~ CoRNERS T 30T >>240 THENPRINT @ 1S%32."D
ESIGNH TOO LARGE." FOR I=1 T0O 1000:HNE<T I

R 3

298@ FOR I=1 TO 2:PDOKE_< 1924»32*CGPNER< I

*2—1 >+CORNERC I #2—2 3>, 1 75 NE I

FO\Se PRINT ® 15%32. " THESE F'DI NTS OK <t
7

Do P,
Zi00 LET QE=INKEYS IF Q%="'" THEHN GOTO 31

3119 IF @As<>"Y'" THEN FOR I=1 TO 2:FOKEC1
P24+ I2HCORNERC I%2—1 >+CORNERS I 42—2>>, 122
HEXT I :RETURH

D120 LET DESIGHS=STRINING®<S. * " >:MID®<DES

66

hapter 3 Drawing on the Dragon

1 3=STRECCORMERS 1 3+ 1 5 MIDEC DES IGH®. 4

MICS. CESIGHS . 7 >=STRS

CORNERC Z > CORHMERS © 5—1 &
S

TO CORMERC3>—1
TO f‘OF’NEF’- =5

IS LHAT IS BEIN

ExT
IHPUT “POSITION T
CMOTOR IS OHND>: Qs
"PLACE RECORDER INT

3 TO 199000 : HEXT
II20 OPEH _"O".£—1."ARTIST"

2330 PRINT £-1.DESIGHS®:FOR I=10 TO LENCC
ESIGHS > FRINTE 1. ASCCMID®:DEZIGHS. I.1 >3
THENT

3IJ40 CLOSE £-—1
2ISO STOP

This program is not solely intended to permit the user to doodle on the
screen in text mode. Its other purpose is to act as a feeder for later
programs which need some pictorial output. This module is one of two
which saves the design that you have created for later use. In this
particular case the design is saved in such a way that only that part of the
screen which actually has the design on it needs to be remembered.

Commentary

Lines 3030—3050: Having pressed # while the cursor was flashing, the
user can now input I or 2 to designate two opposite corners of the
rectangular areas of screen to be saved later.

Line 3060: The main part of this module, called by pressing the S key,
begins here with a check that the two corners defined by the user do in
factdescribe a valid rectangle. For the rectangle to be acceptable, all that
is necessary is for the corner numbered 1 to be above and to the left of
the corner numbered 2.

Line 3070: This particular format for saving a design is intended for
small scale designs and a string will eventually be used for storing the
design in the program which later picks up the design from tape. Since
the maximum length of a string in Dragon Basic is 255 characters, a
check is made that the size of the design will not make it impossible to
store it in one string.

Lines 3080—3100: The points defined as the corners of the rectangle to
be saved are marked on the screen for the user to confirm. Note that the

67

T he Working Dragon

two points so marked are actually immediately outside the rectangle to be
saved.

Line 3120: Inthisline begins the process of building up thestring which will
be used to recreate the design at a later date. The first nine places of the
string are given over to recording the co-ordinates of the top left-hand
corner of the specified rectangle, followed by the width. They are placed
into the string using the STR$ function which translates a number into a
string. Note that we do not use LET in placing these figures into the string.
That is because when defining a part of a string using the format
MID$(A$,1)=“xxx"" the inclusion of LET at the beginning of the
command actually results in a syntaxerror. This is a quirk of Dragon Basic
which can confuse anyone new to the machine.

Lines 3130-3180: These two loops scan through the screen positions
falling within the definedrectangleandstore the characters foundtherein
DESIGNS. To show the progress of the loops an asterisk is placed in each
location asit is dealt with, but thislineisunnecessaryif youfeel thatyoudo
not need such reassurance.

Lines 3200—-3260: These lines ape the process which will be carried out by
later programs which reprint the design stored in this format. Their effect
is first of all to extract the co-ordinates of the top left hand corner of the
specified rectangle, together with the width. These starting points are then
used, in conjunction with the loop variables to replace the characters in
DESIGNS$ intheoriginal screen locations from which they weretaken. The
sole purpose of this is to give an example of the method of recalling such a
design and toreassure the user that the design has been properly recorded.

Lines 3280—3340: Having come this far in the cunning construction of a
string to store the design, further progress is barred by an irritating
limitationinthe Dragon’s Basic. All thatshould really be necessary to store
the design on tape should be the instruction PRINT # — I, DESIGNS.
Unfortunately, the Dragon steadfastly refuses to recognise the.existence of
the graphics characters, which are not standard to the ASCII (American
Standard Codes for Information Interchange) character set, when saving
and loading data. Consequently, while we cansave the firstninecharacters
of DESIGNS (i.e. thenumbers representing co-ordinates and width) all the
graphics characters themselves have to be transformed into their code
values and saved as numbers. This limitation is one of the most
disappointing on the Dragon, since quite apart from present uses, the
ability to store numbers in the range 0 to 255 in single characters and save
them in that form is one of the commonest ways of reducing the amount of
memory used for data storage on home micros.

68

Chapter s Urawing on the Uragon

Testing Module 3.1.5

This module can only really be tested when we have entered a subsequent
program which will pick up the design from tape and reprint it. Provided
that the method of defining the desired rectangle works satisfactorily,
together with the associated error-checks, and that once the screen has
been cleared the design is reprinted in its original form, you can be fairly
confident that the whole of the module is working properly. The only way
to be absolutely sure would be to enter the relevant parts of the later
program Words which would recall the design from tape and reprint it.

MODULE 3.1.6

2500
3510 REM SAVE MA

ISz PEM*-‘Z***-&J’.**#k:xt****#k:*-"

B3T3O PRIN *32 . OTOR O - ‘AUD IO O

TR

START RECORDER < entei~>: =

BSWO MOTOR ON: FOR I Tl:l 10020 NE~T

3IS6e OPEN_ "0t . £—1. (ol

BFSTO FOR_I=1 TO 14*32 PRINT £—1.PEEK? 1aF
S+I > MEXT I

3S8a CLOSE £—1

3TSS STOP

Forapplications whichneed the use of a larger design, one whichwould be
too big to store in a single string, this method of storing a design stores the
whole of the screen display, again in the form of the code values of the
individual characters. The first 14 lines are stored.

Testing Module 3.1.6

Once again, this module can only be effectively tested when a later
program, Where, has been entered.

Summary

A great deal of space has been devoted to the commentary on this program
for the simple reason that the techniques used here will be found to have
applications far beyond the present program — or indeed only graphics
applications. In the programs that follow we shall be moving cursors
around screens and inputting one-key commands by means of INKEY$
with gayabandon, so do ensure that you have understood what you have
entered. Apart from the techniques, however, the program is a good
example of the way in which a program with an interesting function
(drawing pictures) can be made into a useful tool with a little thought. A
major point in building up a library of programs is not that there should be
a wide variety of totally self-contained programs, but that the programs
should all contribute to each other’s usefulness by the ability to exchange
data where appropriate.

69

The Working Dragon

Going Further

1) The program might be more useful if, instead of simply stopping once a
design has been saved, it were to clear the screen and reprint the design,
then return to the cursor module so that the design can be further
developed if desired.

2) A one key instruction for clearing the screen might be another useful
addition.

ARTIST: Summary of one-key functions

With flashing cursor:

0to7 prints graphics characters specified by bottom cursor, in colour
indicated by key value.

8 erases character over which cursor is positioned.

moves to program section which allows definition of rectangle to be
saved.

’ or ’moves bottom cursor to indicate a different graphics character.

S saves specified rectangle.

M saves first 14 lines of display.
Without flashing cursor: i.e. after input of #.

1 defines top left-hand corner of rectangle to be saved.
2 defines bottom right-hand corner of rectangle to be saved.
3.2 DOODLE

We turn our attentionnow to a short program which is mainly for fun but
which also contains a useful lesson when it comes to the saving of graphics
displays. The name of the program is Doodle, and theintention s to allow
you to do just that, employing the joysticks that can be cheaply purchased
as accessories to your Dragon.

MODULE 3.2.1

DO IR M 24 3 3 3 K 2 K A A A A A A
1 REM ExEclJTE DRAWING

20 REM
1050 PHODE ©.1 . PCLS . SCREEM 1.1

1040 LET R==2:LET v=2

10T0 FOR I=0 T0O R:LET J<I >=JOWSTKCI >: NEX
i

1060 IF IMKEvYS="S" THEN GOSLUE 6000
1970 LET H=x-2%CJC2>>D6 >+ 2%< JC23<6 3 LET

10680 LET Y=vY-2%< JC3>>56>+2%C <3 ><S > LET
1160 PSETCX.v.< 1+ PEEKC SS280 >< >25% > > >
s

1110 IF INKEY®="C" THEMN PCL
1120 GOTO 1050

You should immediately recognise this as a variety of the cursor move

module which youcameacrossin the last program. Its purpose is to allow
the user to move a small dot around the screen, inking in or deleting lines

70

Chapter 3 Drawing on the Dragon

along the way. In this module apart from the simple techniques necessary
to use the joysticks, we also make use of the PMODE and SCREEN
commands for the first time.

These commands seem quite awesome at first sight but their use is really
quite simple. The plain fact is that the more individual dots a computer is
capable of placing on the same sized screen, the more memory must be
devoted to remembering just where those dots actually are. For most
applications, the kind of memory necessary to create and sustain a display
of up to 256*192 pixels is simply an expensive luxury. We noted in the
course of entering the Unifile program that 4, 500 memory spaces could be
saved by cutting down the amount of memory devoted to the screen. All
that PMODE really does is to specify how many dots the Dragon will be
capable of drawing on the screen and consequently their size, since
however many dots may be printed they will always end up filling the
screen if they are all of them present at the same time. The number of dots
and their size is shown in the table on page 93 of the Dragon manual.
PMODE also sets, by the way, the place in the memory where the image on
the screen is to be stored but this need not concern us at the moment. The
second figure in our PMODE commands will be 1.

In this program we have chosen to use PMODE 0,1. We could equally
have chosen to use PMODE 1,1 which would have made available more
colours but increased the amount of memory necessary, since the more
colours a particular point of the screen may be set, the more there is to
remember about that point. The smallest dot (or pixel) which we shall be
able to draw in this PMODE is actually composed of four of the pixels
which would be available in PMODE 4 which is the highest resolution
available.

Having set the PMODE and cleared the area of memory which will be
used (with PCLS) it only now remains to set the SCREEN. It is probably
easier to remember the function of SCREEN if you actually think of it as
WINDOW, for that is the function that it performs.

At any time you have at least two windows available to you called
SCREEN I and SCREEN 0. SCREEN 0looks out onto the area of memory
which stores what is displayed on the text screen (that is the type of display
we havebeen using upto now), while SCREEN I looks out onto the area of
memory used to store any displays created when one of the PMODE:s is in
operation. The only other complication is that our window can be set to
two colours, that is to say that it can look at a design in two ways and,
though the same design will be seen, a different set of colours will come
through. Thus, SCREEN 1,0 means ‘look through the window at that part
of the memory which PMODE says is in use and interpret what is there
using colour set zero’. Depending on the PMODE in use, colour set zero
will either consist of black and green or of green, yellow, blue and red.

71

The Working Dragon

There is another colour set, 1, which will either be black and buff or buff,
cyan, magenta and orange.

With that brief introduction in mind we turn to examine the program
lines that actually use these commands.

Commentary

Line 1030: Bearing in mind what has been said above, you should have no
difficulty interpreting this line. All that happens is that we choose a
PMODE where the number of pixels that can be set is 128 across by 96
down. We clear the area of memory that will store this screen (try not
clearing it to see the necessity for this) then we look through the window
that points to this part of the memory — before running the program the
Dragon was showing the view through SCREEN 0, as it always does when
not instructed otherwise.

To satisfy yourself that SCREEN has no other function but to look at a
part of the memory, you might like to try the experiment of removing this
instruction, running the module (when you have debugged it) and playing
with the joystick, stopping the program and then inserting temporary line
9999SCREEN 1,1:GOTO 9999. Now GOTO 9999 (not RUN) and you will
see the design you were creating in the memory but which was invisible
because you were looking through the wrong screen.

Line 1050: This line reads the four joystick inputs, each of which provides a
value between 0 and 63, depending on the position of the joystick handle.
Due to some strange quirk, although only one joystick is connected (in the
case of this program the left) all the values for the two possible joysticks
must be read or the result is nonsense.

Lines 1070—1080: Here the X and Y co-ordinates of theleft-hand joystick
are used to move the dot with which a line is drawn. Note that the move is
two positions at a time. This is necessary because no matter what the size of
the smallest point in the current PMODE, the screen is alwaysdefined as
being 255*192 when it comes to specifying addresses. Since our pixel is
actually 2*2, a single move involves a move of 2 spaces in terms of its
address.

Lines 1090 —1100: When the moving dot arrives in a particular position
that position is PSET, that is, switched on to show colour 1 (green). The
next line then reads the memory location which registers whether the
button on the joysticks is being pressed, and uses the value obtained in a
condition, whose value is subtracted from the colour. If the button is being
pressed, the value PEEKed will not be 255 and the condition will be true —
the condition is actually PEEK (65280) <> 255 — and the point will be

72

Chapter 3 Drawing on the Dragon

recoloured in colour zero (black) and will disappear. In this manner lines
can be erased.

Line 1110: Pressing C will result in the screen being cleared.
Testing Module 3.2.1

Using the module as it stands you should be able to doodle adesign on the
screen, inking in lines or erasing them at will.

MODULE 3.2.2
& [LSS e AL L L R L L L S S e L
& FEM DATA FILES
& 11 4 4 o A K A R Y A R R
& MOTOR ON AUDIO ON:CLS: THFEUT C“FOSITI
< TFIPE THEN PRESS enter <MOTOR IS OH>:
= 413 MOTOR OFF @ THFUT INT
o
1= '1 E e
= LIHICH

a.s100

&
& FOR I=1 TO 10200 HEXT:'CSAv
Ei RE L TETS.E144
= L@ ALDID OFF
&]
& FCLS : CLOADM “FIc™ . a
& nUIDIC OFF SCF‘E‘EN 1.0 RETURHM

Whether ornot this module will be of much use to you will depend on
whether you wish to save high resolution designs, created by this program
orsome other of your own devising. Itisincluded with this program purely
because it uses a facility which is shamefully neglected in the manual
supplied with the Dragon (it’s not the only thing to receive that treatment
as you'll no doubt have found to your cost). The facility I refer to in this
case is known as CSAVEM, which is actually meant to enable a user to
store machine-code programs onto tape but whose function is simply to
save a chunk of memory straight onto tape. Since the design that has been
created using this programis merely a chunk of memory, we cansaveitand
reload it whenever we wish — and the same process can be applied to any
other design produced in high resolution modes.

Commentary

Line 6070: The CSAVEM command only requires that you specify the
memory address to start saving, the memory address to finish and the total
number of bytes (or memory locations) involved. The video memory for
high resolution begins at 1536 and, in the highest resolution PMODE,
continues up to address 7679. Although we do not need all that space for
PMODE 0, it was actually reserved when we switched the Dragon on and
we have not reduced the amount by use of PCLEAR, so it is safe to save it
without interfering with any of the memory used by the actual program.

73

The Working Dragon

This routine, with these figures, is therefore good for any PMODE where
video memory is set to start in the first possible locationi.e. upto PMODE
4,1.

Line 6100: The reverse of CSAVEMis CLOADM, which loads from tape
some data and placesitinto aspecific area of memory specified by the user.
The positioninto which the data is loaded is specified by the offset figurein
the CLOADM command. In our case we want to load the data back into
screen memory, so the offset is zero, which results in anything loaded being
placed into exactly the same place as it originally came from.

Line 6110: To emphasise the point about SCREEN, notice how the
reloaded picture appears instantaneously when this command is reached.

Testing Module 3.2.2

You should now be able to create a design using the first part of the
program and then to save it to tape. Stop the program then RUN it again
and call up this module to reload the data you have just saved. You should
find that your original design appears on the screen immediately after
loading has ceased.

Summary

This program is an indication of the benefit to be gained from keeping an
eye out for simple techniques to accomplish tasks that you have set yourself
— even if they do sometimes arise from unusual sources. Machine-code
programs, and the techniques associated with them are completely outside
the scope of this book, and yet the simplest method of storing a picture that
you will find comes straight out of the set of commands provided for use
with machine code. The moral is that almost anything you can learn about
your Dragon, no matter how obscure it may seem at the time, may well
come in useful at some future date.

DOODLE:S y of key nd
S execution of program is diverted to data file module.
C screen is cleared.

3.3 TANGRAMS

This program willbothserveto allowyouto playthe ancient Chineseshape
game of Tangrams and to introduce the subject of the Dragon’s
outstandingly useful DRAW command. Using this command we shall take
a potentially long and complex program on most other home micros and
reduce its length dramatically since almost all arduous calculation about
angles is performed automatically.

74

Chapter 3 Drawing on the Dragon

If you are not familiar with the basicidea behind DRAW, you will find it
described in Chapter 10 of theDragonmanualand it would beagoodidea
to refer back to that before attempting to enter this program.

MODULE 3.3.1
1000 RE
1910 REM INITIAL ISE
1020
1030 CLEAR 15000 PMODE 4.1 :PCLS:SCREEN 1
.o
140 CUERFDGLHUERFDGLH™ LET R
a=1
1050 DIM PATTERNSCS> LET S=z
19050 LET X=129.LET Yw=S&
1e7e Gosus 4000

Nothing in this initialisation module should now be beyond you. The
function of the variables will be explained during the next module.

MODULE 3.3.2

RE
4010 REM ROTATION
4020 REPMEEKNK
4930 IF F<>1 THEN LET S=
4940 LET SHDPT—INT(To*coORC 2 5~<S >3+ . 5>
ET _LONG=SHO
G056 " TF ROTETE 2<>INT<ROTATE. 2> THEN LET
_LONG=THTCLONG*SARC 2 3+. 53 LET SHORT=LONG

4ev=a LET LONG=2%INT<LONG~2>:LET SHORT=2x%

4070 IF _F=1 THEN LET D®="B"+MID®<ANGLES .
. Bl

IF _F=3 THEN LET D=="
RO.1>+STR®(SH -2 >+" ; "+MID®<ANGLE=® . S+RO
3 " rMID®M ANGLES . @ +R0O, 1 >+STRSC i
0>+ ;" +MIDS ANGLES . 1 +RO. 1 >+STR®C SH >+ ; '+
MIDH. ANGLE®, 24RO, 1 >+STRE<LO >+ B +MID®< &

- 3 :RETURN
4100 IF F=a4 THEHN LET DS="B"+MID%: ANGS. RO
1 3+STRECSH >+ " ; "+ MIDS< ANGS . 2+R0. 1 >+STR="
SHO+"; "+MIDBCANGS. 4+R0O. 1 D+STRECLO D>+ “+M
ID®C ANGS. E+RO. 1 >+STRECLO >+, " +MID®C ANGS .
RO.1>+STR®LO>+"; "+MID®C ANGS. 2+R0. 1 >+STR

I’mafraidthatthereisnogettingaway fromthefact that thisisa dense and
complex module, and one which is quite difficult to enter without errors.
Fortunately, by its very nature, the error messagesit will generate will give
a very good clue as to where the errors lie. The function of the module is to
calculate certain variables and then, on the basis of these to construct
strings which can be used to draw the three types of geometrical shapes
used in Tangrams: triangles, parallelograms and squares.

75

T he Working Dragon

Commentary

Line 4030: The variable F will be used to store the type of figure to be
drawn. 1 means a triangle, 2 and 3 mean parallelograms (two types to take
account of the fact that a parallelogram is not symmetrical and thus is a
different shape when it is turned over) while 4 indicates a square. The
variable S refers to size and will be explained in relation to the following
lines.

Lines 4040—-4050: These two lines are necessary to cope with the fact that
the triangles in Tangrams are of three sizes, each twice the area of the next
size down and also the problem that arises out of the fact that lines
DRAWn the same length take on different lengths according to the angle at
which they are placed on the screen. Consider the example of a triangle
drawn according to the following instruction U10;F10;L10. According to
the instructionsgivenin thestringit would appear thatall thesides should
be the same length and yet examination of the directions specified will
show that what would be DRAWn is a right angled triangle, where clearly
the hypotenuse is longer than the other two sides.

The solution to thisapparent paradox is that all three sides of the triangle
do contain the same number of pixels, but that the pixels themselves,
because they are laid out on a rectangular grid on the screen, are further
apart diagonally than they are up or across. The upshot of this is that to
DRAW even asimple figure like a triangle on the screen and then to rotate
it through 45 degrees, as this program is capable of doing, the length of the
sides in pixels must be recalculated each time.

These two lines begin by calculating the length of the short side of a
triangle when DRAWn with the hypotenuse diagonal on the screen — the
lengths of the sides of each size of triangle are SQR(2) * the length of the
sides of the next size down. The hypotenuse (LONG) is the same length in
pixels.

In the second line, account is taken of the effect of drawing the triangle
atan orientation which makes the hypotenuse vertical or horizontal. In this
case, the length of the hypotenuse must be again multiplied by SQR(2) to
achieve a sensible result (i.e. a triangle with the same area).

Since the square’s sides and the long side of the parallelogram are the
same length as the hypotenuse of the smallest triangle, these two lines have
also dealt with them.

Line 4060: This line ensures that there are an even number of pixels in the
side to be printed, which in turn ensures that the drawing position ends up
at the same place that it started when the figure is finished.

Lines 4070—4100: These lines appear very daunting but all they in fact do
is:

76

Chapter 3 Drawing vl we vidyon

1) specify a blank move from the current draw position to the perimeter of
the figure to be drawn.

2) alternating between short and long sides, as defined by lines 4040and
4050, add the necessary figures and the directions foreach side to the string
which is being built up.

3) specifyablank move back to the initial drawing position once the figure
is completed.

You will note that the actual directions are not specified, they are letters
taken from the string ANGLES$ on the basis of the variable RO, which as
can be seen from the earlier part of the module, is short for ROTATE. For
any given figure, the relative positions of the letters in ANGLES$ which
indicate the directions of the sides will always remain the same but the
starting point, that is the directionof the first side, willdiffer according to
the degree of rotation. Thus at the end of whichever of these lines is
executed astringcalled D$ will have beencreated,capableofdrawingone
of the figures at asize specified by S and at an orientation specified by RO.
Nothing in the string will indicate where the figure is to be drawn, or the
colour.

Testing Module 3.3.2

To test themodule it will be necessary toenterline 20300f the program and
then to enter a temporary line 2040 GOTO 2040. Running the program
should now result in the drawing of a small triangle. To test the drawing of
the other figures, the value of F can be altered to any figure from 2 to 4.
Rotation can be checked by altering RO to read anywhere from 1 to 8. Size
of the triangles should be capable of ranging from 1 to 3 as represented by
the variable S.

MODULE 3.3.3

A
REM DRAMWING ROUTINE
REMA 668 St
DRAL “C1:EBM "+ STREC < >+ . *

CFSTR®C W e

LET TH=1INKEY® IF T THEN SOTo 2o

S L e STRE W b

22+ TE=CHR®EC 2> o
(S

1
>+10%: TH= 225 THEN LET

ENEE2_TheEN LET
< THE=CHRA

>4+C THE=CHR®: 94 7 >
F v>1&2 THEM L

e

2 wizo THEN LET 29

Zioa Tt e et RS TATE~roTATES 14
S*ECROTMTE >& > N
=211 IF F=1 THEHN LET S=S—<Ts="S" >:IF S>4
TH LET S=g-

212 IF T=s>"2 THEMN LET F="YAL
< T® -

2138 IF T%="D" OR TH='"C" OR T®H=CHR®< 13>
THEH GOSUE 3000

Z214@ GOSUB <4000 GOTO 2Za3e

77

1ne Working ragon

This is the main loop of the program and you will recognise some features
shared with a cursor move module. The function of the module is to allow
the current shape to be moved around the screen, rotated, printed
permanently and recorded, or for another figureto replace the current one.

Commentary

Line 2030: A section is tagged onto DS$ specifying that drawing will start at
the position indicated by the co-ordinates X and Y and that the colour in
which it shall be drawn is 1 or green.

Line 2040: A waiting state until a key is pressed.

Lines 2060—2090: The limits to movement expressed in these four lines
express the need to ensure space for the largest possible figure to be drawn.

Line 2100: Input of R rotates the figure through 45 degrees clockwise.

Line 2110: If the current figure is a triangle, input of S will shuttle the
variable S through the range 1-3.

Line 2120: Input of a number in the range 1 to 4 will select the
corresponding figure.

Line 2130: Input of Dor C or ENTER will result in calling the next module.

Testing Module 3.3.3

You should now be able to move, rotate, exchange or, in the case of
triangles, to change the size of your figure at will.

MODULE 33.4
2000
3070 REm REORaM CuRRENT EaTTem
=020
F@30 IF HH<? AND T®=CHR®< 13> THEN MICS O

3028 ML TET PR rER N ac N oD - LET HH=NHN+1
tRETURHN
@40 PCLS: FOR I=0 TO HNH-—1
Z@50 DRAW PATTERNSC I >
Y THEN LET T1s=INKEY=®:IF T1
=

* THEHN FOR =T
ATTERNSC J+1 > NE
"I GOTO 2040

. LET Twm=
39860 HEXT I RETURHN

The purpose of this module is to allow shapes to be permanently stored in
an array so that if they are erased by another shape being moved across
them, they can be redrawn. The module also accomplishes such a
redrawing of all permanently entered figures and allows their deletion.

78

Chapter 3 Drawing on tne Uragon

Commentary

Line 3030: The actual Tangram game is played with seven pieces — two
small triangles, one medium, two large, one square and one parallelogram.
This line enters the current figure, including its position, into the string
array PATTERNS, provided that seven pieces have not already been used.

Lines 3040-3080: In this loop, each figure contained in PATTERNS is
redrawn on the cleared screen. If C has been input, that is all that is done. If
D has been input then the user is given the opportunity to delete the figure
just drawn by inputting D again. Pressing any other key leaves the figure in
the array.

Testing Module 3.3.4

You should now be able to enter figures permanently into the array, to
redraw the pattern if it is corrupted by the movement of figures and to
delete figures from the design built up so far.

Summary

The speed and simplicity of this program are a tribute to the Dragon’s
abilities. Very few other home micros would be able to cram so many
functionsinto a program of this size. The programis also anindication of
the sheer flexibility of the DRAW command when applied to strings which
are created in the program rather than having to be specified before the
programis run.

Going Further

1) This program could easily be expanded to make allowance for other
types of shape — a few more lines in Module 2 is all that it would take.
2) More complex designs could be built up if the size of PATTERNS were
to be increased.

3) No check is made, if you do want to play Tangrams, that the correct
pieces are being used — only that no more than seven are in the design.
Could you add such a check?

4) 1f youare proud of the designs you have created, or of your solutions to
Tangram problems, you may well want to add a data file module to the
program.

TANGRAMS: Summary of one-key commands

Tand Q move current figure 1 and 10 pixels upwards respectively.

Jand A move the current figure 1 and 10 pixels down respectively.

> and— move the current figure 1 and 10 spaces to the right
respectively.

< and+ move the current figure 1 and 10 spaces to the left
respectively.

79

tue ywoIRNiny vragon

R rotates the current figure on the screen.

S alters the size of the current figure if it is a triangle.

1-4 specifies the type of figure to be drawn.

G redraws the total design so far.

ENTER places the current figure, at its current position, into the
array of pieces.

D calls up the deletion function: pieces are displayed one by

one with the opportunity to delete them by further input of
D. Any other key leaves a piece in permanent array.

3.4 DESIGNER

1 have a special fondness for this program simply because the ideas on
which it is based are not my own: they were taken from an excellent book,
The Principles of Interactive Computer Graphics by William M. Newman
and Robert F. Sproull. The reason that I say fondness is that the program
serves as a reminder to me of how much there is always to learn about the
principles of programming and how many fields lie waiting to be opened
up for no more cost than the price of a few books. Based on two simple
procedures from that book, this program will allow you to define a design
of up to 10,000 by 10,000 pixels in size, to examine that design at various
scales and to rotate all or part of it on the screen. Once its use is mastered it
is capable of being used in a variety of applications where it is desirable to
be able to change and manipulate designs quickly and easily.

MODULE 3.4.1

cooe REr
S91© REM DATA FILESD
020 RER
sesalforoR) BalFNOTONGHLCESHIITHELT POSTX IO

N TAPE THEN PRESZ ente=+w <MOTOR IS
=13

5040 MOTOR DFF‘~INPUT ‘PLACE RECORCER TH
CORRECT MODE THEH e - :

E0Se PRINT : PRINT '-FUNl:Tons AvATLARLE
CL2SAVE DESIGH.. . “2 SLOAD DESIGH: INEUT -
LHICH DO voU REQUIRE " :@: 0 R GOTO seve.
=130

6050 RETURH
€978 MOTOR OH FOR I=1_TO 10000 : NEXT
co2@ OPEH_* £—1., "DESIGH"

£05e PRINT s
610 FOR TO LL—1:FOR J=@ TO 2:PRINT
£-1,CO0ORDS< I.,.J> HEXT .1

611© CLOSE £-—1

s13@ oFEN A"!")i*l, “DESIGH'"

s140
&1 FOR I=& TO LL__—l‘FDR J=a TO 3: INPUT
£—1.CO0ORDS< I.J>:NE~T .1.1I
&16
“17
A standard data file module.
MODULE 3.4.2

1900 RE A A A *
1910 REM INITIALISE

80

Chapter 3 Drawing on the Dragon

™M
@38 PCLEARS : PCLS : PMOC

1
1040 LET IWPPER=0:LET Lousp_lsx FLET LEFT=
G LET RIGHT=Z=%S%

1e%se DImM CDDPDS(EBQV4\

10

10

1@ GET c@.e>-<a
. e

The initialisation module — the variables will be explained as they are
used.

Commentary

Lines 1070—-1080: This is our first use of the Dragon’s GET command,
which allows a specified area of the screento beread into anarrayand later
replaced anywhere on the screen by the use of PUT. In this case what is read
from the screen is a small x which will be used later as a cursor but this
process cannot be seen as SCREEN has not yet been set to point to the
graphics area of memory.

Testing Module 3.4.2

This module cannot be properly tested until other modules have been
entered.

MODULE 3.4.3

SOOO RE M A A A
2018 REM MAIN PROGRMAM
2020 REM *k A AR
2030 LET X=LEFT+128:LET Y=UPPER+S<:LET R
IrHTaLEFT+255vLET LOWER=LPPER+191

SCREEM 1.@
L1=%~LEFT : LET U1=Y—UPPER
I=e TO LL-—1
<1=COORDS< I

=]

vvvy

I.1
<2=COORDS< I .2
1.3

I
3 T 12231 AND T1>=LEFT+2 AND T1<LER
T+2Sa4 MND T2>=LPPER+2 T2<UPPER+ 150

HEN CIRCLE< T1—-LEFT, TZ-HPPEP
2140 LET Te=INKEY®:IF T=<>

.2
THEN GOTO 2

—E VL2 L1r2.ULe2> %26
2T NEXT I

ZJU‘—L) CL1+2.U1+2>.%1.0R

TO 25 :NEXT

2.U1-2>—< L1+2.111+2>.%2.PSET

=3

=]

MND TH< 4" THEN LET POWE

THEN LET mMO=1
THEN LET mo=o

220 LET TEMP=TEMP—10"POLUER¥C TS=CHR=S< 9 > >
T10~POWNERYC TE=CHR®C &> >
2260 _IF MO=1 THEN LET LEFT=LEFT+TEMP ELS

2270 IF LEFT<©® THEN LET LEFT=©

LET LEFT=3S745
X—LEFT+¢53

LET X=LEFT~+

2338 IR e T ThEN LET UPPER=LPFERSTEMP &
LSE LET Y¥=¥Y+TEMP

81

The Working Dragon

Z34© IF UPPER<@ THEHN LET UPPER=@
UPPER>274S THEN LET UPPER=S74Z
r—UP P

-1

OR’ Tm=:D" HEN SO3SUBR 3000
FhelTE0S0e ceoa

243@ IF MO=1 THEN GOTO Z03a@ ELSE GOTO Zo

This main program module allows a flashing cursor to be moved around
the screen, the area of the design to which the screen points to be moved,
lines to be defined and later modules to be called.

Commentary

Line 2030: X and Y are the co-ordinates of the flashing cursor. UPPER,
LOWER, LEFT and RIGHT are the addresses of the boundaries of the
screen, expressed in terms of the overall 10000 * 10000 pixel space available
for the design. The screen area starts in the upper right-hand corner of the
total area available.

Line 2050: LI and Ul are the co-ordinates of the cursor on the screen.

Lines 2060—2120: As the program progresses, the lines entered into the
design will be stored in the array COORDS. This loop will print out each
line entered so far, when necessary, calling up a later module to do the
actual drawing of lines.

Line 2130: Tl and T2 represent the address of the start of a line that is
currently being defined. If Tl is set to —1 it means that no lineis currently
being defined. If Tl isnot equal to — 1 and the co-ordinates represented by
Tl and T2 fall within the boundaries of the screen, then a small circle is
printed at the location.

Lines 2140—2200: This section again makes use of GET to save what is on
the screen in the place where the cursor is to be printed. The cursor is now
PUT ontothe screen with the OR attribute set — in other wordsits printing
will not erase anything that is already there on the screen in that position.
Then the original contents of the location are restored by PUTting back
what was saved in line 2150. Note that because both GET instructions
terminated with G, meaning ‘store full graphic detail’, the PUT
instructions have also to have an attribute specified, such as OR or PSET
— even though the latter only means ‘put what is in the array on the
screen’.

Line 2210: Input of a number in the range zero to three, sets a variable
called POWER which will later be used to determine the move to be made

82

Chapter 3 Drawing on the Dragon

by cursor or screen. The move will be 10 to the power of POWER pixels
(i.e. 1to 1000).

Line2220: Input of M is stored inthe variable MO (for move) is interpreted
as meaning that any move specified will be a move of the screen across the
design.

Line 2230: Conversely, input of X isinterpreted as meaning that any move
will be a move of the cursor across the screen.

Lines 2240—2370: The cursor co-ordinates or the screen co-ordinates are
changed according to the above rules if one of the arrowed keys is input.

Line 2380: Input of F defines the beginning of a line to be drawn at the
point currently occupied by the cursor.

Line 2390: Input of T defines the destination of a line, provided that the
co-ordinates of the origin of the line have already been entered.

Line 2400: Inputs of R or D specify rotation or deletion of parts of the
design and require the calling of other modules.

Line 2410: Input of S results in the calling of the data file module.

Line2430: Thedesignis redrawn, with the cursor resetin the middleof the
screen if MO indicates that the screen move mode is set.

Testing Module 3.4.3

You should now be able to move the cursor around the screen, but not
many more meaningful tests are possible until the later modules are
entered. You may at least satisfy yourself that the co-ordinates of lines are
being entered by defining some starts and finishes and checking that the
addresses have been placed in the array COORDS. Note that a temporary
line 4000 RETURN will be necessary.

83

The Working Dragon

MODULE 3.4.4

Emf*x**x4 AR R AR T 2

RN S
LET LOMER=UFFER+191 LET RIGHT=LEFT+

4240 IF CX1<LEFT AND X2<LEFT > OR <X1>RIG
w1l SLOMWER AR w2 L0
PER > THEMN LET

. AET =
4252 IF Y1<UJPPER THEH LET EDGE=UPPER
A4S0 IF w1 >L0OWER THEN LET ECGE=LOLIER
4270 IF w1<UPEER OF risioves, TRHEW UET X
=X 14 K21 hFC EDGE— Y1 2% w2~ v1=EDG
E

HEN LET EDGE—L OWER
Too iF v“SZOPPER GF weSLOUER THEM LET ==

a
=XZC M1 N2 OKCEDGE~Y2>-<C¥1—w2>:LET YZ=EDG
E

4112 IF H1>RIGHT THEN LET EDGE=RIGHT
412@ IF 1<LEFT THEHN LET EDGE=LEFT

a413e 1<LEFT OR X1>RIGHT THEHN LET w¥i=
LN 1> LET M1=EDGE
a1a0 LET EDGE=RIG

315 LEFT

A1E@ IF X2>RIGHT OR X2<LEFT THEN LET Yv2=
R St r2 S¥CEDGE—¥Z2 >0 X1 : HME=EDGE
217 IF X1—LEFT AN 3 AND <1
—LE

>=

PER >—< X2—LEF T, w*2—UFFER > PSET

2182 RETURH

The purpose of this moduleis totaketwosetsof co-ordinates, X1/Y1 and
X2/Y2 and to decide whether any part of a line drawn between the two
points so defined would pass across the screen as it is now placed. If any
part of the line would fall upon the screen it is drawn, otherwise it is
ignored.

Commentary

Line 4040: If both X1 and X2 or both YI and Y2 are off the screen in the
same direction then no part of the line can fall onto the screen.

Lines 4050—4060: If a line starts above or below the area covered by the
screen, these two lines reset the variable EDGE to coincide with the top or
bottom of the screen.

Line 4070: For lines which begin above or below the screen, this line
calculates the horizontal position at which the line will pass through the top
or bottom edge. The formula in the first half of the line says nothing more
complex than that if, for instance, the line in question passes through the
top edge of the screen halfway through its vertical component, it will also
be halfway through its horizontal component. Clearly this will only hold
true for straight lines.

Lines 4080—4160: The same kind of process is carried out with regard to
variables Y2, X1 and X2.

84

Chapter 3 Drawing on the Dragon

Line4170: Since it’s possible for a line not to lie entirely above, below or to
one side of the screen and yet still not pass across the screen itself, this line
makes one final check that the co-ordinates calculated do in fact lie entirely
on the screen and, if they do, draws the line indicated.

Testing Module 3.4.4

Y oushouldnowbein a positiontodefine linesandseethem drawn on the
screen and also to move the screen over the design. You could do that
before, it’s simply that you couldn’t see it happening.

MODULE 3.4.5

Z=O000 REPR

2010 REM SCALE-ROTATE-DELETE

FZeza RE

O3B CLS:PCLS:SCREEN ©.1

2040 INPUT "ANGLE THROUGH LIHICH DCESIGN T

= TOBE ROTATED : ": ANGLE ' LET ANGLE=RANGLEX3

SAiiss2s- 120
O3S0 FRINT - INPUT “"SCALE FACTOR TO DI IDE

CINENSIONS BY. " SCALE:IF SCALE
ALE =

P A SCALE

=}
a1
.2

1o LET 14::(COORDSE I .3 u—"r s TCAI B

M IHTC XIHCOSE AHNGLE >+ 3%XSINC A

>3
LET Y1=Y¥+INTCVYI%XCOSC ANGLE >—<3%SIH: A
>
LET X2=X+INTC=4%XCOS< ANGLE >+Ya4%SIHc A

LET Y2=%4+INT¢ va4%XCOSC ANGLE >—Ma¥SIty A

NIWZNZWZiW

NRNNNMAR =R QO e -

GCosSUBR {4000
T#<>"D" THEH GOTO
NKEY®: IF T

THEN ©OoTo

["3N)

IF Tim="D" THEN FOR
TO I:LET COORDSC. J.K >
K-MEXT 1 LET LL=LL—-1

IF Ti1is="D" THEN LET I=I-1
IF T1®E="Q" THEN RETURH

Li—1:FOR
el Lk

AUNROXIYDDNACATAFWC N
00000-1000000MOMEMOMS
"

b

Wiy Z

EXT I
IF IHFEEYS="" THEN ©SOTO 3220
RETURN

The purpose of this module ist oreproduce the design on a smaller or larger
scale, as specified, and to rotate it around the current cursor position. The
module is much less complex than it looks at first sight.

Commentary
Line 3040: Rotation is input in degrees and translated into radians.

Lines 3080-3110: The co-ordinates of the start and finish of each line are
recalculated in terms of their distance from the cursor position and simply
divided by thescalespecified. Note that it is perfectly possible forthescale
to be less than one, thereby magnifying the design.

85

The Working Dragon

Lines 3120-3150: The procedure for moving a point with, for instance,
co-ordinates of X and Y through angle A, is to apply the formula
X2=X*COS A + Y* SIN A and Y2=X*SIN A + Y*COS A. This is
applied in theselinesto X3, Y3, X4 and Y4, which are the co-ordinates in
terms of the cursor position. When these altered variables are added to X1
and Y1, they define a scaled and rotated pattern.

Lines 3170—3230: If this module has been called by the input of D during
the course of the previous module, then the lines are drawn one by one,
giving the user the opportunity to input D against any which are to be
deleted. Input of Q at any time, returns to the main module. When the
scaled and rotated design is finished on the screen, it remains until a key is
depressed before returning to the main module.

Testing Module 3.4.5

You should now beableto reproduce anylines entered to a specified scale
and rotated through any desired angle. You should also be able to call up
this module for the purpose of deletions.

Summary
Given a little imagination, this program can be a useful tool in a variety of
applications. You can plan layouts, draw maps or simply mess about. In
fact, with a program like this one loaded you can make your Dragon
simulate many of the capabilities of far more expensive graphics
computers beloved of engineers and scientists in many fields.

The program is also a reminder of the wealth of ideas that lie waiting to
betranslated into action from the wide variety of books on computing that
are available today.

Going Further

1) The end of Module 3 has been left alittle messy. It works properly but it
is cumbersomein th. tit requires theredrawing of all the lines on each move
of the cursor. What are the conditions that would have to be satisfied in
order to make it practical to skip the redrawing of the lines? It’s not as
straightforward as it looks at first.

DESIGNER: S y of one-key d

With flashing cursor:

0-3 sets cursor move to equivalent power of 10.

next move specified will be move of screen over design.
next move specified will be of cursor within screen limits.
line to be drawn starting from cursor position.

line to be drawn to this position (only after F).

call data file module.

I NS

Chapter 3 Drawing on the Dragon

R call module which scales or rotates design.
D as above but with option to delete individual lines.

Arrowed keys — appropriate move of cursor or screen.

Afterinitial input of D:
D delete line just drawn.
Q return to main module.

87

CHAPTER 4

Easy education

In this chapter we shall consider three programs which enable the Dragon
tomakeits contribution in the field of home education. The first of these,
MultiQ, is a program designed to allow the user to input a series of
questions and answers, which are then used as the basis of randomly
generated multiple choice tests. The second program is Words, a basic
reading tutor and, lastly, Where? teaches the locations of cities in any
country in the world you care to program in.

The object of the programs is to give you some idea of what can be
accomplished in the field without too much effort. Even so, unless you
intend to buy a range of software on cassette, with specialist programs
dedicated to individual subjects and coming complete with their own files
of data, the usefulness of your educational data will always depend on the
amount of work you are prepared to put into them. The best multiple
choice question program in the world is not much use unless at some stage
you are prepared to sit down and feed in enough questions to make it
interesting.

If youarepreparedtogive such programsthedatato work with, theycan
oftenbespectacularly successful for thesimplereason thatthey work at the
pace of the student, show no signs of impatience, give no reward for short
cuts or cheating and are always ready for just one more try at any time of
day or night.

4.1 MULTIQ

This program is a favourite of mine. WhenI wrote it I was satisfied that it
was a competent piece of work that would do the job that it was designed
for. It wasnotuntil I entered a mass of questions and answersand tried it
out on people that I realised that such programs make learning as addictive
asany game.

Like Unifile, thisprogramis a chameleon, designed to changeits colour
to suit your need. At one moment you may wish it to be a French tutor,
offering a variety of French words as possible translations for an English
word. Later on you may have it asking fairly complex questions on 19th
century history, giving a series of dates as possible answers. The aim of the
programis to enable you to do all these and more without having to make
changes in the program itself.

88

Lhapter4 tasy education

MODULE 4.1.1
908 RE
@1 REM DATA FILES
sez2e R
6030 AUDIO ON: MOTOR ON:PRINT: INPUT “POSIT
TION TAPE THEN FRESS enter <MOTOR IS ON
20w MOTOR
2048 T PRINT T INPLT "PLACE R O Rl Conr
ECT MODE THEN PRESS enter
o5e PRINT.PRINT “FUNGCTIONS nwnILHBLE D
" 15SAVE DATA". . "2>L0AD DATA" : INPLIT “WHIC
H DO YOU REQUIRE: ";Q:'0N Q GOTO £870.6150

€060 RETURN
S@70 MOTOR ON.FOR I=1_ TO i@2@a:NEXT I

se2a oOPEN'"'O ~1."MULTIQ"

cosa PPxNTE—:,ITEMS

S100 I=1 TO ITEMS—2'PRINTE—1.A%CI . &
=< T > NExT I

6110 FORI=0 TO 9 PRINTE-1.D%< I>.D<O.1I%,0D
1.1 NEXT

6120 PRINTE-1.NAMESCO 3, NAMESC 1 >

6138 CLOSE£-—1

6140 RETURN

6158 RUN_616

6160 PCLEAR 1 :CLEAR 12000 'DIM AR 499>:DI
M BECa399 > DIM DC1.3>:DIM DECS>:DIM NAMES
<1>

6170 OPEN"I".£—1."MJILTIA"

6186 INPUTE£—1.ITEMS

6198 FOR_I=1 TO ITEMS—2:INPUTE—1.A%SCI>. B
< I > NEXT I

6208 FOR I=8 TO 9:INPUTE—1.D®CI>.DC@. T3>,
DC1.I>:NEXT I

6210 INPUTE—1.NAMESC G . NARMESS 1 >

6226 CLOSE£-—1

6230 LET A%< ITEMS—1>=CHRS<2SS>'LET AS<{O
=CHR®< G >

S24e GOTO 10ee

A standard data file module.

MODULE4.1.2
zooe
7o10 PEM FORMAT TITLES
zoze

rTe3e LET P2=214—INTCLENC F®> -2

7040 PRINT ® 32%P1+P2. STPING.(LEN(F’)+2-
CHR=< 125 > >

7TOSA PRINT @ 22%CP1+1>+P2. CHRSC 185 >+Fe+C

B2HCP1+2>+P 2. STRINGS< LENCFS
S+2 . CHREC12S > >
Te7ve RETURN

Astandardtitle formatting module.

MODULE4.1.3

10006 REM*

<
1030 CLS:LET Fes="MUJLTI® LET P1=1:GOSUB

7oee

1940 PRIMT: PRINT "COMMANDS AVAILABLE : "
1ese PRIMN 1 >INPIUT NE ITEMS "

1@6@ PRINT >SEARCH-DELETE

1@e7e PRINT ENTER NEW _ TY =

1920 PRI SGENERATE QUESTIONS'
1@5@ PRINT SDISPLAY OR RESET SCORE"
1108 PRINT >SDATA FILES"

111@ PRINT SINITIALISE"™

1120 PRINT >STOP"

112@ PRINT "IHICH DO ¥YOU REQUIRE: ™
iZiCLS

1140 ON Z GOSUP Z000.3000.1640.3500. 4000
. £000. 1500. 1160

89

The Working Dragon

1150 GOoTO 1o
1159 LET F32%RULTIG LET Plesc.cOoSuB To0o
172 sSTOoP

Astandard menu module.

MODULE 4.1.4
1SS0 REMEF A EEF AT XA AR RN
1510 REM INITIALISE
152 S e e o e
1S2© PCLEAR 1:CLEAR 12006
1540 DIM NAMESC 1 >, Q< S
1S5S0 DIM ARCA9S>:DIM B=< 499 >
1560 LET ASCO>=CHRB<(O >:LET AS< 1 >=CHR=< 2S5
=5
1570 DIM DHECS>.D< 1.9
1580 LET ITEMS=2
159 F®="TEST STRUCTURE" LET FP1=1:G0O
suB 7ooo
1500 PRIMT: INPUT "NAME FOR ANSWER: " NAME
o>
1510 PRINT: INPUT “NAME FOR QUESTION: " iNA
ME=< 1 >
1620 PRINT : INPUT "ARE THESE CORRECT <Y-H
>: "W CLS

1530 IF _Q=<>"Y¥" THEN GOTO 1500
LET P1=0: Goc‘us 7000
Z= -

INPUT “INPUT NEW T
] 1@ TYPES ALLOW
ED":FOR I=1 TO 2000:NEXT I:GOTO 1000
1690 IF Q=®="ZZZz" THEN GOTO 1000 ELSE LET
D®< TYPES >=Q% ' LET TYPES=TYPES+1:CLS:E0TO
1540

1700 ©=OTO 1000

Youmay notice the similarity between this module and the equivalent one
in Unifile, since the object of both is to initialise variables and to store
certain user- defined prompts for later use in the program. The use of the
variables will be discussed in the course of the commentary on the
program.

Commentary

Lines 1640—1690: Each answer may, if the user wishes, be given one of ten
types whose names are user-defined. These types may be used later on to
make the tests generated more difficult. The types input should reflect
natural groupings into which the questions and answers fall. Types do not
have to be input and, if they are not, no reference is made to types when
inputting data.

Testing Module 4.1.4
Youshould now be able to input a format for the program, including the
names of up to ten types.

MODULE 4.1.5

2000 RE
2010 REM REM INPUT OF NEW ITEMS

90

Chapter4 Easy education

2oz REM
2020 LET Fs="NEW ITEMS" 'LET Pl1=1:GOsSug 7

240 PRINT: PRINT "’ZZZ’ TO @

zoso PPINT PRINT NAME®SCO®>; INP T Txn
2050 ITEMS>=500 THEN PP!NT PRINT
Eoom For MORE ITemMs 230

IF
2980 PRINT PRIN
IF D®C O >t H [=1=]
210 CLS'LET F-—"TYPE"wLET P1=0:GOosue 7o
=)

(=]

211 FOR 1—9 TO TYPES—1:PRINT I+1.">"i:Dw

< I>:NEXT

2120 F'PINT NAMES®C 2 >; T T1lw

21390 PRINT NAMEWC 1 >, T

2149 INPUT “"TYPE FOR THIS ITEM: T

2159 CLS:LET Fe="NEW ITEM"” . LET Pl=1: rGOsSU

B

21 CPRINT NAME®SCO >;

21 TPRINT NAMESS 1 > ™ TZ2"

21 8525 TTHEN PRINT:PRINT " TvPE

2 INPUT "ARE THESE CORRECT < 'v--N

> IF QW< >y THEN GOTO 2000

22090 IF D®<CO><>"" THEN LET DC(O.T~1>=DCO.

T=1>+1'LET T1®=CHR®C48+T~1>+T1®m ELSE LET
Tamt o

2210 Gosua 2

2220 LET MS-ITEMS*l P GOTO 2oee

2250 LET D<1.1I >=sSuUmM
226© LET SUM=SUM+D<O. I >

2280 RETURN

Onceagain the similarities between this module and theequivalent one in
Unifile should be obvious. Promptsalready defined by the user are used to
structure what is input.

Commentary

Line 2200: The array D is used to store two sets of figures. In D(0,etc) is
stored the number of items in each of the types defined by the user. The
type of the answer is attached to the answer by means of a single character
flag which is a number from 0 to 9. Note the use of the CHRS function to
achieve this — using STR$ would mean having to deal with the space that
this function tags onto the front of numbers.

Lines 2230-2270: When the user quits the module, the second half of the
arrayDisupdated. This holds the start positions of eachtype group. Thisis
arrived at by simply successively adding the number of items in each type
group to the variable SUM.

Testing Module 4.1.5

Insertion of a temporary line 2500 RETURN should enable you to input
items to the program under your specified headings, though these will not
be stored anywhere.

MODULE 4.1.6

£Toe RE
2510 REM BINARY SEARCH
2520 RE

91

he Working Dragon

2530 LET POWER=INTC LOcc ITEMS-1 >-Locc 2> >
I

2328 TP mscCeARCH <TI® THEN LET SEARCH=S
EARCH+2"1
IE_OWCSEARCHS>>Tim THEN LET SEARCH=S

IF SEARCH<1 THEM LET SEARCH=1

H= SEARCH>ITEMS—1 THEN LET SEARCH=TI

TEMS—1

2600 HEXT

2210 TF MmiSEARCH><T1m THEM LET SEARCH=S
2

2620 FOR I=ITEMS T0O INTCSEARCH »>+1 STEP —
1 LET A%CI>=A®< I—1 >:LET B%< I >=B=w< I—1 >: NE

;;3; LET ASCSEARCH >=T1% . .LET Bw%< SEARCH >=T

2242 RETURHN

260 RETURHN
A standard binary search module. Note that items are stored in
alphabetical order of answers and that, since the type of the item is
attached to the front of the answer as a single character, the items are in
factstoredinorder of type. If you do not enter any types, the items will be
stored in straight alphabetical order of answer.

Testing Module 4.1.6

You should now be able to input answers which will be properly inserted
into the main arrays, A$ and BS.

MODULE 4.1.7

Z2DQ REMAA AR A XL R LA A AAAAAAAAAN:
3010 REM IUSER S
e iy

I3 e 7o
3040 PRIMT ITEMS s ITEM

=2
300 FRINT @ >*ENTER’ FOR HE~T I

3050 PRINT * >FPOSITIVE OR HEGATIVE HUME
R _TO MOWE POINTE

30706 FRINT " >°'0ODD’ TO DELETE ITEM™

3080 PRINT ' > ZzZZ° TO QUIT PIJNPTIFIN"
3090 PRINT STRIHNGS: 32.CHRSC

3182 LE EARCH=1

3110 PRIMT ® S¥3Z. "ENTRY SEARCH
2120 PRINT MID®< A% SEARCH >,

3130 PRINT B%<SEARCH

3140 LET TEMP=VALCLEFTS< ASC SEﬁRf‘H >.1
31T0 IF LEFT=< A%< SEARCH >. 1 >< > ER R
INT D=< TEM

31£0 INPUT "WHICH Do ¥OU REGUIRE: " : =%
2170 IF S=®="0DD" THEHN LET D<O.TEMF >=B< 0O

:FOR _I=SEARCH TO ITEMS-—2:LET A=

THEN RETURHN

3230 LET SEARCH=SEARCH+VAL< S= >

3240 IF SEARCH>ITEMS—2 THEHN LET SEARCHs=]
TEMS—2

3250 1IF SEF!PCH<1 THEHN LET SEARCH=1

2260 GOTO 31

A simple search on the lines of previous programs, but with the added
facility that the user is able to specify a forward or backward leap through
the file.

92

hapter 4 Easy education

Testing Module 4.1.7

You should now be able to page through the items you enter, jumping
backwards or forwards in the file and to delete items.

MODULE 4.1.8

ADOO R E M A4 A A AR K K A A A A AR
2510 REM RANDOM QUESTIOHNS

DS2O RE MK A4 4 KK K AR A A A R KR A
2S30 LET RUESTIOHN=

2540 LET FS="QUESTIONES" LET Pl1=1:COoSUS =

RBSZA FPRINT INFUT “D0O r:ul NISH FOSSIBLE A
MSWERS TO BE_DRAWN ONLY m _THE sAm
A e PE M >

P00 IF GUESTION=2 OR D<o, wAL:LEETS: Axc o

< THEN LET START=9 LET HUMBER=IT
VALY LEF THC A% 21
CLET MUMBER=D<@. wAL: LEFTH: A%. G 1 >

I=aa TO 4
EN SOTO3&

R R >
CcR2 > THEN GOTO 3I530

(=) o 1

IF F‘l_F!"E @00 THEN SOTO 363
RET'@ HEXT

2ESO LET Q< I >=PLACE

LCHR=C 1m1 > s

o =
1.3 “sMIDSCMRCRCI—1 > .20

WHICH 0D ¥oOll THINK IS THE RI
INPIUTYTYPE TN THE HUMBER

2750 LET QTOTAL=RTOTAL+1

BFPSO _IF ANSIER< >Q2+1 THEMN PRINT " INCORRE

CT. THE RIGHT MHNSWER WAS: " :m=+1:" 2 “;MID
Z%:GEOTO = a
Cerrect " CPLAY “TS04L3C:F20:1
SL2AILACESAL2A P10, LIGE. A L2

FO3L2C: OILIA; 04C ; O3L=ZAE "
FE10 LET RIGHT=RIGHT+]
ITRO INPUT "ENTER FOR HEW QUESTION OF

cZzzZs TO GUIT FUNCTION. ":G%:-CLS: IF o
="Z=Z" THEH RETURHN ELSE GOTO =&370

This module is the core of the program. Its function is to generate the
random tests according to instructions laid down by the user.

Commentary

Line 3550: Tests can take two forms. Potential answers can be drawn from
the whole file of possible answers, in which case the test is likely to be fairly
easy, for the simple reason that a fair number of absurd answers may be
generated if the questions and answerscovera widerange. Answers may,
however, be drawn only from the same type if the user so specifies. In this
case, answers are likely to be more similar and the tests accordingly more
difficult.

93

The Working Dragon

Lines 3570—3590: These three lines generate a random number which is the
addressof aniteminthe file, then arandom place foritinthearrayQ. Note
that RND(5)—1 is not quite assilly as it sounds — it is notequalto RND@),
since RND(@@) can never equal zero.

Line 3600: This line determines whether the user has asked for the harder
type of test and whether there arein fact five items in the group from which
the first random question has been chosen. If both conditions are met then
the variable START is set to the first item in the group and the variable
NUMBER is set to equal the number of items within the group. If the user
has not specified the harder test, or if there are not five items in the group,
then START is set to the beginning of the file and NUMBER to the total
number of items within the file.

Lines 3610—3690: The rest of the array Q is filled with the addresses of
answers randomly chosen from the area of the file indicated by START
and NUMBER, with checks to see that answers are not duplicated.

Lines 3700—3770: The question and the five possible answers are printed
on the screen, with a prompt to input the number of the correct answer.

Lines 3790-3800: Depending on whether the right answer is given, the user
is either simply informed of the right answer or is rewarded with a cheery
tune to indicate success.

Testing Module 4.1.8

Ifyou have previously saved some data, you should now beina position to
generate some tests, either hard or easy.

MODULEA4.1.9

R R e

REM SCORE

REMEXEXEEEEEEX LR ELELLXE LR L ERA1D LET
E Fl=1 GOSLIR 7o

FRIMT FRINT “TOTAL GQUESTIONS: ":@TOT

'CORRECT ANSUERS

—

0 _ZERO SC
RETURN

During the course of the previous module the variables QTOTAL and
RIGHT were updated for each question and for each right answer
respectively. They are now used to make an assessment of the user’s
performance, with allowance made for the 20%o correct answers that could
be obtained by simply pressing the same button each time.

94

Lhapter4 Easy egucauon

Testing Module 4.1.9

You should now be able to obtain an assessment of your performance in a
test and to reset your score if you wish. If this module functions correctly
then the program is ready for use.

Summary

This is actually quite a powerful program, but remember that you will only
confirm that for yourself by entering enough data to make it enjoyable.
The program is also a reminder that wherever possible, if you are going to
write a complex program, you may as well go a little further and make it a
general purpose one, thus saving yourself a great deal of work in the
future.

Going further

1) As presently constituted, the program checks to see that the same
answer is not displayed twice for a question, but not that two answers from
different positions in the file are actually identical. Could you insert a
check into Module 7 to ensure that identical answers are not printed?

2) The question of rewards for success is an interesting one — adults seem
to find success its own reward when playing with, 1 mean using, this
program. For children, however, all manner of rewards are possible. What
about tagging a short game onto the program which would be accessed for
three minutes every time 10 right answers had been supplied.

4.2 WORDS

Once you have a program that works well, you soon find that it suggests
other uses to you. Such was the case with MultiQ and the result was this
simple aid to learning to read which, with the help of an adult, can be fun
and a step forward for kids in the earliest stages of reading. The only real
difference between this program and MultiQ is that the questions take the
form of simple pictures and the answers are possible words to go with the
pictures.

The pictures are no more than the output of another program we have
already discussed, Artist, picked up from tape and loaded into this
program’s dictionary. The capacity of the program as presented here is 100
words, though another set could be picked up from tape if so desired.

Designs meant to be used by this program need to use only the bottom 10
lines of the screen, since the top six are used to set the questions.

MODULE 4.2.1

RE|
REM DATA FILES
RE

623a MOTOR _ONM AUDIO ON: INPUT “POSITION T
APE THEMN PRESS enters < MOTOR IS OH>: ;0%
FE

95

The Working Dragon

5242 FRIMT:IMFUT "PLACE RECORDER IH CORR

EPT MODE THEN FRESS erter " 0%

NT “FUNCTIONS AYAILABLE: " .
SLOAD DATA™ - INFLIT “LIHIS

S @ -0ON O GOTO &27a.s18a

I=1 TO 10222 :NEXT I

1. "WORDS"
ITEMS

s100 ITEMS—1

5112 PRINT £-1.A%<I.205.A%< I.1 < A% T

L1353

£12a FOR J=1@ TO LEN<AS<I.1>>

€130 PRIMT £—1-ASCCMIDHECAsc T 1 2. 023

£14© ME=T J

&1Sa NEXT

S150 CLOSE£-—1

E172 RETURH

Si2a PCLEARL CLEAR 20000 LET FLAG-1 GOTO

1S3

€192 OFEN_"I",.£—1."WORDS"

s20a IHNP £—1., ITEMS

621 FOR I=0 TO ITEMS—1

15 HMNCTIF LEN
A% T .1 >+

S250 NENT 4 1

E£z27'e GO 1299

A standard data-file module.

MODULE 4.2.2

7oea RE
721 REM FORMAT TITLES

F2=14—INT. LEMHCFS >~2 >
voaa PPINT @ S2¥P1+P2.STRINGECLENIF®>+2..

TOSA FRIMNT 2 I2HCF1+15+F2. CHRSC 125 >+Fs+C
HR=S: 155 >

TOSO FRIMT @ 32%<F1+2+F2, STRIMNGS: LEM:IF®
>+2.185 >

Tova RETURN

A standard title-formatting module.

MODULE 4.2.3
1202 REM* *
1912 REM MENL
1929 RE
1232 CLS:LET F$="LORDS" :LET F1=1:
oo
1940 PRINT: FRINT “"COMMANDS AVAILABLE : "
105 PRINT 1>INPUT NEL ITEMS'
1968 PRINT 25s LETE "
1978 FRINT ~ 3 IESTIDNS"
1988 FRIHNT 4 DISPLAY OR RESET SCORE"
1250 I =
1108 PRIMNT e
1110 FRINT 7>
112 PRINT: THPUT RERUIIRE '
iZrCLS
1138 IF Z<€ THEHM ON Z GOSUB Z2000. 2500 . 3%
200, 4000, 5000 : GOTO 1000
11402 ON Z-—5 GOTO 1S02. 1160
1150 GOTO 1eaa
1160 LET F$="WORDS":LET P1=6:GOSUR 7200
1172 STOP

A standard menu module.

96

Chapter 4 Easy education

MODULE 4.2.4
LSOO R Mok ok ok o o A
151©@ REM INITIMLISE
1S52e RE :
1530 PCLEAR 1:CLEAR 20000 LET FLAG=2
15340 DIM Q<45
1550 LET LAST=1
1SS0 DIM ASC100 .2
1376 TF FLAG=6 THEN GOTO 1000 ELSE =ATO
s15e

This module initialises the program variables, including the main array
AS$. You may notein relation to the use of this array that I have committed
the cardinal crime of ignoring the zero element.

MODULE 4.2.5
RE
REM PRIMT DESIGH
RE oA AN
LET v=VALILEFTSCDESIGHS. =55
LET X=VvMmML<MIDS<DESIGHS. 4.3 5>
LET Z=vAL< MIC®c CESICHS. = 353
For T+<LEN. DESIGH® >—Sy-=—1
FOR J= 1
FOREZ 10242354 T+ 5. ASCe MIG®< CES TGN

L Iow oIS 133
zZ1@0 PETIJPN

If you remember the Artist program then you will also remember the
function of this module, since it is the same as the program section in the
earlier program which reassures the user that the correct design has been
stored in a string. For commentary refer to Artist.

MODULE 4.2.6

ZOOO RE MAXA AR AN AR **r****w******»’

MHEL4d ITEMS" . LET P1=0:GOS

204 MOTOR _OH: AUGIO OH: INPUT “"POSITI
< Mo Q

TAPE THEM PRESS ente TOR IS OHD>:

2e5e mMOTOoR oEF.ANPUT tPUT RECORDER THTO
FLAY MODE TH

2es@ OPEMH I

2070 INPUT £—-1.DESIGHS: IF LENZDESIGHS >=2
THEN LET DESIGHS=DESIGH=®+'" "

Zese IF _EOF<—1> THEHM GOTO 2120

2098 IHMPUT £-—1.H

2100 LET DESIGCHB=DESIGHB+CHRSC N>

211 GDTOD zZe=x

2120 CLOSEE£-—1

212@ cLse

2140 cOosSLB 200

2159 PRINT @ o ":iINPUT “DO vOU WANT TH

IS <YW N> IF @s<>"" THEN RETURH

256 ThELT THoRE To a0 wITh THIS PIoTure
IR

2170 IMPUT “IS THIS CORRECT <Y-HD>: ", ,Q%: I

F @sc>"Y" THEM GOTO 2150

Z18@ LET ASC ITEMS. 1 >SDESTICHS. LET A% ITEM

S,2>=B:LET ITEMS=ITEMS

2188 T PO T ANDTHE R PICTURE <vti>: o« Gm: T

F_@s< >y THEM RETURN

Z20ee cGoTo 2e3e

97

T he Working Dragon

The purpose of this module is to load individual designs created by the
Artist program and to allow them to be labelled with a word and then
stored in the mainarray. Note that there is no sort —items areinserted one
after another.

Commentary

Lines 2080—2120: You may note something new here, the use of IF
EOF(—1). All this means is that instead of reading a variable from tape
which tells the programs how many characters are to be read and added to
DESIGNS, we simply go on reading until the End of File marker is found,
then stop.

Testing Module 4.2.6

Wehavecomealongwayinto the program without testing anything but
most of the material has been familiar, so there should be no major
problems. You should now beina position, having initialised the program,
to pick up designs from tape which were created earlier using Artist and to
supply a name to go with them, though you cannot yet display the file into
which they are placed except in direct mode.

MODULE 4.2.7

2see RE
2510 PEM USER SERARCH

2328 TR ITemasS T IS TRETSAN
2T40 LET S=0

2358 CLSe LET DPESIGHNS=A®CS,.1>:GOSUS 3000
TPRINT @® 15*’?2-ﬂ‘(5 2

2S6€0 PRINT @ P >>e~nt,er" FOR HNEX>T ITEM'
257 PRINT ¢ >>POS. OR HNEG. NUMBER TO MON
E

2580 PRINT ">>°DDD° TO DELETE ITEM. "
2590 PRINT “>>"ZZZ° TO QUIT FUNCTION. "
2690 INPUT

2610 IF Q%='"DDD" THEHN FOR I=S TO ITEMS—1
FLET AMCT .1 >=AMCI+1.13:LET A®CI.2>=ASc I+
2620 IF Qw="ZZZ" THEHN PETURN

2630 IF _Q$="" THEHN LET S=S+

254©@ LET 8=8*\'FIL.<Q§>\IF s>1TEr~|s—1 THEM L
ET S=ITEMS—

2650 IF s<a THEN LET S=0

ZEEO® GOTD 2530

A simple user search module.

Testing Module 4.2.7

You should now be able to page through any items you load and delete at
will.

MODULE 4.2.8

RE|
3510 REM RANDOM GQUEST IONS

BS3O LET Q1=RHD< ITEMS >—1
3D40 LET Q2=RHND< S >—1

98

2SSO LET R<A2>=m1
2JE® FOR _I=0 TO 4

AS7O IF I=R2 THEN EO0TO3640

3580 LET PLACE=RNDC ITEMS >—1

3539 IF RLACE=@Aca2> THEN GOTO 3380
IE20 FOR_JI=0

AE10 IF PLHCE 25 THEN GOTO 3520
3620 NEX]

&30 LET Tal 1 s=PLACE

&40 NEXT

36T LET DESIGNS=A%<{A1.15>:CLS® GOSUB =@

TO 4:PRINT @ I*32.A%CACI >.=

SHB2, v INPUT “WHICH OHE <
®: IF C®="Z" THEN CLS:FOR I1I=0

® I. CHRS<RNDC 128 >+127 >: NE

T:PRINT B S*32+10. "Scoclhwe’ ; : FOR I=1 T0O

+1

1.25> THEN CLS®: PRINT @ 8

3 TO 1000 :NEXT : GOTO 2S00
3 rect-' - PLAY " TS04L3C, P20, L

2CILA0IAE A LEMAILACE A L2A P10/ LACE . AsL2

ALLAGE,A; 04L2C. O3L4A: 04C,; ORL2A

2710 LET RIGHT=RIGHT+1

R7T20 GOTO 3500

Equivalent to the random question module in MultiQ, except that there is
no provision for the harder type of test, so the module is simpler. The
module also says a rainbow goodbye when the user quits — it does not
return to the main menu so that there is a smaller chance of someone
inadvertently wiping out the data.

Testing Module 4.2.8

The program should now choose a random design and print it at the
bottom of the screen, then print five words to choose from, one of which
must be input.

MODULE 4.2.9

P G g e e
4910 REM SCORE
4220 PEM************************

4030 IF oS =0 THEMN RETU
4240 LET Fs—“scDPE"zLET =1 nSUB 7000
GOS0 PRINT: INT “TOTAL RUESTIONS *:@sur

PR
4920 PRINT "“CORRECT ﬁN<MEPQA“;PIFHT
g INTCCCRIGHT—@

UT "D0 ¥0OU WISH TO ZERD SC
ORE <Y¥.-H>: © IF Qwm<>"Y! THEN RETURN E
LSE LET RSUM=02:LET RIGHT=0:RETURN

The score-keeping module, as in the previous program.

Testing Module 4.2.9
You should now be ableto receive ascorefor any testsundertaken.

Summary

This again is a program which requires some work if it is to be of any use
since the small designs it uses do take some time to create. In creating the
designs it is especially important to prepare them properly in advance

99

beforesitting down with the Artist program. Use of squared paper can save
a lot of frustration when it comes to actually creating the designs before
they are entered.

If you don’t have any children the right age, then why not design some
cruderepresentations of electrical symbols, and have the program set some
tests about them?

Going further

1) Your children may be more familiar with lower-case letters. Could you
alter the program so that the output is in lower-case?

2) The question of rewards rears its head even more pronouncedly in
relation to this program. Try to think how winning could be made a bit
more of a thrill.

4.3 WHERE?

This is an uncomplicated program which quite effectively tests your
knowledge of geography, or at least of the location of cities in a range of
countries. The program makes use of the second format of design output
by the Artist program, the map save.

MODULE 4.3.1

REMAEFFFEE XX EEE XL L L XL LA E
REM FORMAT TITLES

RET
LET F2=13—IHMNTCLEMCFS »~2:

FRIMT 2 32%F1+F2. STk IMGH LEMS Fs 92 -

FRIMT @ 324CF1+1>+F2.CHRSC 185 >+F s+
TOE® FRINT 2 324<F1+2>+F2.STRINGS: LEN. F$

Toarve RETLRH

A standard title formatting module.

MODULE 4.3.2

coes REr A A A A A
6@210@ REM DATA FILES
F£O20 REMEFXFXAEEFEEELEEEEEELEE L L L AL

€220 _MOTOR _OH-AUDIO OM: INFUT “POSITION T
AFE THEM FRESS evter MOTOR IS Tias
MOTOR OFF

60490 FRIMT:IHFIT "FPLACE RECORDER IN CORR
ECT mMOCE THENM FRESS enter ' Q%
oS0 F‘PX?IT'F‘RI[IT "FUNC TIOHNE AWATLLAM E

DATA". . "2 >L0AC OMmMTH" NMPUT “lWHIC
H DG 0Ol REQUIRE " .Q:0h & GOTO S070.<150
c0sa RETURH
seve MDTDF’ OMN:FOR I=1 TO 10008 :HEXT I
cose EN_vat.£-1, " LHERE:

= AL

1200 FOR -6 To CTOTAL—1 FOR J—o TO 12
€11@ FOR K=1 T0O 32

PPXNT £—1.ASCCMIDSCERSC I . J>. K. 1>>

61ze

=130 T E

s140 cl_osse—x CRETURKM

A£15©@ PCLEAR1L :CLEAR 1800 ' LET FLAG=1:GOTO
1532

S£162 OPEN "I".£—1."WHERE"

£17@ IMPUT £—1.CTOTAL

g

FOFR I=0 TO "TDTHL*I FFOR J=@ To 132
1 QR k=1 TO 32
COTO sS230
INPUT £—1.C:LET Bs<I. J>=B%<I. Ji+rCHR
HNHE>T kK ... I
&®230 CLOSEE—!. GOTO 1202
A standard data-file module.

MODULE 4.3.3

1000 REMEXFFXEFELELEEEEEEEELELELEE LR
o

1920 REM##+% A ot

1630 CLS LET Fs="WHERE" ' LET P cosue T

1940 FRINT :PRINT “COMMAHDS AVAILABLE ™
19S5 PRINT 1
1950 FRINT

1270 FRINT 3

1930 PRINT 3 >

1996 PRINT =

119@ FRINT = o

1118 FRINT INPUT “"WHICH DO Ol REQAUIRE - '
1120 ON Z GOSUB Z2Z9000. 2T00. 3000 . SO0 . 1560
115

1140 GoTOo 1eoa

1152 LS LET FSs="WORDS" LET P1 1 cosues 7
[s1=1=)

11509 LET F$="PROGRAM TERMINATED" :LET P1=
19: GOoSUE= 7o

117 ENC

A standard menu module.

MODULE 4.3.4

1500 RE MAAE A A A A A A A A A A A A

iS1© REM INITIALISE

1520 PEM*X**X*X**X**X*Il*ll*ll*l

1S3 FCLE 1 CLE! 220092 :LET FLAG=0
I =

1%5S2 IF FLAG=1 THEN GOTO 6160 ELSE GOTO

Thecountrymapsgenerated by Artistwill be stored in thearray B$, each of
its 21 elements holding 14 lines of an individual map.

MODULE 4.3.5

2000 REMAAAEELIRAELEELELEE L L AEE

2010 REM LOAD NEW COUNTRY

2020 REMAELFEFFEELEEEEELEEELLEEEE RS

NEL] COUNTRIES" :LET F1=1:G0S

RINT: IMNPUT “FLACE TO LOAD THIS CoOuU
NTR FLACE : LET FLACE=MFLACE~-1

20%0 FRINT:MOTOR ON:AUDIO ON: INFUT “FO=SI
T A G DL S SO i s GRSt ST
S

2oca MOTOR OFF: INFUT “PUT RECORDER IHTO
PLAY MODE THENPRESS enter (=L

L £—1."MmAP"

©® TO 13:LET B®<FLACE, I:

> J=e TO 31
Z039® IF EOFC—1> THEHN GOTO 2120
2199 INFUT £—1.CC:LET B®<PLACE. I >=RB%<PLA

9 TO 12:PRINT @ I*32.EB%C

101

INPUT “ACCEPTAELE
‘THENM LeT eToTAL=eT

This module picks up the maps designed with the use of Artist and loads
them intothe array B$. Notethat the useris asked to specify the position at
which the map is to be loaded — there is no automatic mechanism for
allocating it a place.

Testing Module 4.3.5

You should now be in a position to load into the program some maps
created with the aid of Artist. The first of these should be loaded at one.
You should also be prompted to supply a country nameto correspond with
the map.

MODULE 4.3.6

RE|
2T10 REM RECORD CITIES
RE

2530 INPFUT "NUMBER OF COUNTRY 3 COLINTRY
LET COUNTRY=COUNTRY—1
2540 CcLSo FDF’ = ‘ro 13 :PRINT B%c COUNTRY

LI tNENT:LE X=a:LET ‘=

2525 UET T8SINKETs T Te2sw» THEN SoTO =
s

2S5 ET P=PEEK: 19024+ Y¥32+>>

270 ForE: 100y as ek 5 165 PorR 1=1 To ==

P NEST

2SO0 POKE: 19024+Y*324+X 2. P:FOR I=1 TO 2T:N
ExT

£2T90 £O0TO0 =2TTO

22+C TE=CHRECS >> L

CEERET 183 sae TH—CHRE 54 5 >
‘rz‘r+14*"‘r>13)*14*(r<e>

2629 PRINT @ 1S5%32. "X=" i Rl PR
2620 IF T®<>CHR®< 13> THEN G0OTO
2640 cis:PRINT “FECORD, THE FDI_I_DNXNI_ DET

LS A data STATEMENTIN THE SECT
BEn—lNNle— AT LINE “; 1eeee+rcouNTp~r+1 s*xe

=R

2550 PRINT “CITY NAME.> CO-ORDINATE.Y ©0O
—ORDINATE "

2660 FRINT :PFRINT “"THE NUJUMEER IN THE Cagn
STFITMENT AT s 199994—(CDUNTF’ ‘+15%100;

HOULD BE INCREASED

2s70 FRINT CTHE SEecoNG ITEM IN THAT LINE
SHOLILD E T NAME E.G. ¢

2620 PRINT

F INPUT
er
2710 RETURN

The purpose of this moduleis to move a flashing cursor around any of the
maps stored by the program and to display the co-ordinates of the cursor.
On the input of ENTER, the user is given instructions as to the manner in
which details of countries and cities are to be recorded in DATA
statements. Note that the best use is made of this module by first ensuring
that themapscurrently availableareallloadedinto the program andsaved
using the data-file module.

102

Chapter 4 Easy education

Then use this module to record the co-ordinates of any cities you wish to
enter, keeping the co-ordinates and names on a piece of paper until you
have completed them all. Entering the DATA statements referred to every
time you have established the co-ordinates of a new city will mean that you
will lose all the program data and it will have to be loaded from tape each
time.

The DATA about countries is recorded in a section at the end of the
program which, for the sake of clarity you are instructed to begin at 10000.
Eachcountry has aspace of 100 lines, beginning at 10100 for the country in
file space zero, 10200 for the country in file space one and so on. A typical
entry for a country would look like this:

10200 DATA 5,NEVERLAND
10202 DATA CITY1,12,8
10204 DATA CITY2,5,7
10206 DATA CITY3,6,10
10208 DATA CITY4,11,3
10210 DATA CITYS,15,27

What this means is that the country is called Neverland, that it has five
cities and that their names and X,Y co-ordinates (as determined by using
this module) are as shown in the next five lines.

Byemploying DATA statements we do away with the need for modules
to insert and delete data or to page through it— the work is done by the
user. DATA statements can be abused, and often are, but where datais not
expected to have to be entered frequently, they can be a time saver in terms
of programming and a space saver in terms of the program functions that
can be dispensed with.

Testing Module 4.3.6

You should now be able to specify a map that is contained within the file
and move a flashing cursor around it. Pressing ENTER should lead to
instructions being displayed about the necessary DATA statements.

MODULE 4.3.7

TOOD R M K A A A A A A A A A A A
2910 REM GENERATE QIUESTIONS

SO R M4 3 K A A A A M A A A A A A
239230 LET COUNTRY=RND<CTOTAL >—1

) k4]
3Iose CLSB=FDP I=0 TO 13:PRINT BS<COUNTRY

I >s
3060 PokE(1024 +3I2%Y +X >, 106

IOTOS FOR I=1

3080 PRINT @ 1a*32.STRINGHCE3 . CHRSC 125 > >

2090 LET QTOTAL=QRTOTAL+1 'PRINT ® 14%32."
S, INPUT “NAME OF CITY: ", Q%: IF Q®=M% THE
N GOTO_ 3130

2100 LET WRONG=WRONG+1:PRINT @ 15%32."WR
DONG'" s :FOR =1 TO 1000 NEXT

3110 NEXT

3120 PRINT ® 135%32, " CITY WAS “.M=;: : INPUT

* (=
Center " Q% GOTO 3140

103

The Working Dragon

F13Z@ PRINT @ @.M%: " :CORRECT": .FOR I=1 Tn

1900 NHEXT
3142 PRINT @ 1S5%=2. v A< ATOTAL—MHIZRDNG >~ G

TOTAL*X18@;

31 INPIUT “ANOTHER GO <Y -Nb>:":0% IF Q%

> THEHN F‘,ETLJF‘

3160 INPUT “SAME COUNTRY <Y~ i IF @

2250, 0MTHE L E5T6 So56 eilst coto so4o

2170 RESTORE:FOR I=09 TO COUNTRY:RFREAD M- HN

S IF I<COUNTRY THEM FOR =1 To M READ H®
I

2180 FOR I=1 TN RHOCH>:READ M. 3w : HENT -

RETURHN

Thismodule selectsarandom country and, within thatcountry a random
city. A marker is placed at this point and the user is requested to supply the
appropriate name.

Commentary

Lines 3170—3180: Note that to extract data from the middle of a section of
DATAstatements it is necessary to READ the data from the beginning. In
this case the two loops in line 3170 read all the country and city data up to
the country specified in randomly generated number COUNTRY and
then, on the basis of the number of cities specified for that country, line
3180 reads a random number of cities to arrive at the chosen city.

Testing Module 4.3.7

The program should now generate questions, allowing three attempts
before supplying the answer. The user should be given the opportunity to
specify whether the next question should be drawn from the same country
— if not, the random function may well pick up the same country again
anyway — this is not an error.

Summary

This program raises the interesting question of how far it is desirable to go
in building all the necessary functions into the program rather than
allowing the user to do some of the work. Would the program have been
better with extramodulesto cope with the addition, display and deletion of
data for city names and locations? Well in many ways it would have been
better, but would the improvement have been worth the extra time and the
loss of enough memory for two country maps? If you think so, you have
enough examples to work on to insert your own extra modules.

104

CHAPTERS

High resolution text

Having examined some of the Dragon’s very real capabilities in the fields
of both high and low resolution graphics, we turn our attention to an area
where the machine’s performance is somewhat lacking compared to some
other popular micro-computers — the mixing of text (that is letters and
numbers) and high resolution graphics on the screen at the same time.

Many of you may be aware that one solution to thisirritating limitation
istouse the flexible DRAW command to literally draw letters on the screen
in the high resolution PMODEs. The real disadvantage of this method is
the necessity to go through the painfully slow process of building up the
fairlycomplexstrings that will be drawn and writing them into each new
programwhichrequires some text. In the two programs which follow we
shallattempt to overcome thisdrawback by providing a simplemethod of
creating the desired characters, of storing them for subsequent use and of
compiling them into character sets for subsequent use by other programs.
In other words we shall attempt to substantially extend the Dragon’s
capabilities.

5.1. CHARACTERS

The purpose of this program s to allow you to build up any character you
wish which is capable of being fitted into an area on the screen of 32*32
pixels. The actual size of the character when printed on the screen will
depend upon the PMODE and the scale in use when it is DRAWn.

MODULE 5.1.1

REMXx B2
REM INITIALISE

PCLEAR 2 . CLEAR 10022 PMODE
o PCLS4e

T 2
& DRAW "BM-128, 42" NEXT I
FOR I=1 TO 2.FOR .I=1 TO 16:DRAW “C=2
FBR1C1:R3IBDR1 " NEXT I
DRALI “"BM—-128, 42" NEXT I
GET <@ . @>-<C127.7>.C

105

The purpose of this module is to initialise the program variables and to set
up an array which will be used later in the program to reduce the time taken
to print a 32*32 chequerboard design by use of GET and PUT.

Commentary

Line 1030: Since we shall be working with strings we shall need to set aside
more than the basic minimum of string space. The remaining commands
merely set aside sufficient memory space to work in PMODE 1 using the
first colour set.

Lines 1060—1110: These lines initialise the DRAWing position to the top
left hand corner of the screen and then DRAW the first two lines of a
chequerboard, one square at a time. You will note once again how a series
of DRAW commands placed on different lines are executed as if they were
part of the same string.

Line 1120: The area of the screen DRAWn upon is 128*8 pixels and this
rectangle is now stored in the array C using the GET command. It would
not be possible to store the whole 32*32 matrix in such an array since even
to store only 1/16th of it requires over 5,000 bytes of memory.

The heavy memory demand involved in the use of GET is the main
drawback to an otherwise useful feature of the Dragon.

Testing Module 5.1.1

The functions of the various arrays can only be checked laterin the process
of entering the program but at this stage the module should visibly draw the
first two lines of a chequerboard on the screen and then clear the screen.

MODULE 5.1.2

—@0® RER
S©18 REM FUNCTIONAL SUBROUTINES
So20 REM
S©=20 LET Ds="'BmM"
AU iDAIRLIUI R D

STRECH >+, "SI TR®MC ¥ D 5
TR1,U3" RETURN

The sole purpose of this moduleis to define a shortstringwhichdraws an
inked in square at an appropriate position in the array as defined by the
variables X and Y.

Commentary

Line 5030: This line serves as a useful reminder that the strings used to
control the DRAW command do not have to be cut and dried before
running the program. All the string handling capabilities of the Dragon can
be brought to bear. In this case, values for X and Y are inserted into the
string using the STR$ function. The line is included as a separate one-line

106

Chapter 5 High resolution text

subroutine simply because it is called more than once in the program and it
saves space if it is not spelt out in several places.

Testing Module5.1.2
Theline can be tested after the entry of the next module.

MODULES.1.3

2sSee RE
2510 REM DRAI GRID

RE
2530 PCLSZ2.FOR I=0 TO 120 STEP =2 :PUT <O.
I>3—< 127, I4+7 3, C NEXT I
2540 DRAW “Cl:BM128.0:;D128.:L123"

> =~ TO 124 STEFP 4

‘FOR X=© To 12
260 _ IF ACY-4.X-43<>8 THEN GOSUB TO030:DR
-+

1
ALl "Ce; " +Dm
2D7O NEXT X.Y LET X=0:LET Y=®:RETURN

Thismodule places on the screen thewhole32*32 gridthat will be used to
definecharacters. When later modules have been entered it will also ink in
the squares which define a character.

Commentary

Line 2530: Using the array C, which holds two lines of the chequerboard
design, this line prints the 32*32 grid by PUTting the contents of the array
onto the screenin 16 consecutive locations. This is considerably faster than
DRAWing the grid.

Lines 2550—-2570: Using two loops to increment the values of X and Y, the
array A is examined to see if the array element corresponding with each
element in the grid contains something other than a zero. If it does, then
Module 2 is called up and the current values of X and Y incorporated into
DS, which then DRAWs an inked in square at the appropriate point.

Testing Module 5.1.3

The program should now be capable of placing the 32*32 element grid on
the screen, then stopping with the RETURN without GOSUB error. If you
wish, you can feed some ones into the array A in direct mode, then GOTO
2500. The corresponding squares on the grid should have been inked in.
Notethat it takes time to examine the whole array — some 20 seconds — so
that a pause does not mean that the program is malfunctioning.

107

The Working Dragon

MODULE 5.1.4

REM*¥
REM CREATE DESIGN

cosus 2s2a
T

999999

F Te< >t THEN GOTO 1

=]
3 I 25 NE>T
DRAL] "CH+STR®C 1—0 < ey 5 -A< >THTC < ey >

TO 25:NEXT

AN QADARAANRAXAAA
DI RO B

540595 ,9508
st
)
3
"
h

GCOTo 1SS

IF ﬁ(v/4 Msa4>5=1 THEN DRAL "Ca;"+D®&
LET X=3}—a%< TS=CHR®< I3 > >+a4¥< Te=CHR®< 2
F >>124 THEN LET S¢m124

por-3

AR RA aRE R R

DRALI "rCa;: "+Ds:LET AC

GoSUB 23
GOSUR TARA:DRAW CCa

costuiR 2z

EEEE)

FL TP

This moduleisdesigned to allow the userto move a flashing cursor around
the grid printed by the last module, inking in or erasing squares at will.
Having satisfactorily designed a character, a variety of other program
functions can be called up by the use of single-key codes. The
cursor-moving techniques employed will be familiar from previous
programs in this book.

Commentary

Lines 1550—1610: A variation of our standard flashing cursor routine. The
cursor is first drawn and then redrawn to the background colour of the
square it occupies. The whole process cries out for the useof GET and PUT
but unfortunately the smallest rectangle which can be PUT back onto the
screen in this PMODE is twice as long horizontally as one of our grid
elements.

Line 1620: Having left the flashing cursor routine at the touch of a key, this
line checks that the element which has just been redrawn to the background
colour does not have to be inked in according to the information stored in
the array A.

Lines 1630—1660: These lines, as will be recognised from previous
programs, movethe cursor around thescreen. In this case the cursor moves
in four pixel steps, anywhere within the limits of the grid. As usual, logical
conditions are used to control the movement and the required input is one
or other of the arrowed keys on the keyboard.

108

Chapter 5 High resolution text

Line 1670: The 0 key is used to erase any inked-in element over which the
cursor is currently flashing. This is done by simply redrawing it in the
background colour. The relevant element in the array A must also be reset
to zero, otherwise the square will be inked in again every time Module 3 is
called up.

Line 1680: Pressing I inks in thesquare and sets the corresponding element
in the array A.

Line 1690: Input of R rotates the whole grid 90 degrees anti-clockwise
when the next module has been entered.

Line 1700: Input of M will later allow the design to be moved around in the
grid.

Line 1710: Input of I transforms the design into its mirror-image.

Line 1720: Input of E extracts the string necessary to DRAW the character
which has been created.

Line 1730: Input of S results in the string created being saved to tape. Note
that because this will involve instructions being printed using the text
screen, the SCREEN command must be used on return to retrieve the high
resolution display.

Testing Module5.1.4

At this point you should be able to move the flashing cursor around the
grid, inkingin or erasing squares at will. None of the other functions are yet
available and their use will result in an error report undefined line.

MODULE 5.1.5

2 IV 5 4 4 S S 2 2 K 2 2 K K A A A
REM ARRAY MANIPLLATIONS

RE

FOR I=& TO Sapsos Jma TO @1 (LET B<C

. T

TO 31 (FOR =&y TO Q)-LET Ac 1
.J)—ﬁ NEXT 1.

1 T

BEM1S2 . 42: 1112 :FS:E&D12" : FO
TO 120 HEXT

LET MX=@LET Mv=2:LET X1=0:LET xX2=2
= L| 2=

e T Sl NEET e 1k Time

THEN GOTO

S S R e VO R L oL
LET E=iZa4. LE ET vz

CEMIE2 . SALL1I2 S R1Z & L12"
THEN LET MY—124—Y LET mMx
ET Y1i=2.LET ¥
=SSyl
THEN LET My=12a~% LET mMx
=124 :LET CE T 2= LET Yi=a
=t DRALL se - SR DE s Le

109

The Working Dragon

2142 IF Tis<"1" OR Tim>"4" THEN FOR I=2T
TO ST :DRALI "CABM1ITO. " +STR®: T 2+ i R12% N

FLET Yi1=v¥1 -4
MYy=mv_-4
To ~2 LET B

LET AcT

*
21 :LET Bc I

':)

l TLET Ac T
l—l:|<l =" ERQQQPETI RN

This module performs three of the functions called from the previous
module, namely rotation, inversion and movement of the design within the
grid. All the manipulations are performed by employing asecond array, B,
to which is transferred the data from the array A, suitably modified. The
array B is then copied back into A.

Commentary

Lines 2030~2050: Examination of the subscripts for the arrays A and B in
the first line will reveal that those three lines accomplish the rotation of the
data stored in the array A by 90 degrees, that is to say that element 0,0 is
moved to position 31,0 and so on. Having redefined the array A, Module 3
is recalled to draw the modified grid.

Lines 2060-2180: This subsection accomplishes the movement of the
design within the grid. In order to understand this function it is first of all
necessary to visualise the corners of the grid numbered in the following
manner:

1 2

3 4

On calling up this section by the use of theM key inthe previous module,
theuserisaskedto specify acorner. If corner4isspecified, then arectangle
isdefined with two opposite corners consisting of grid corner ! (the corner
opposite to 4) and the current position of the cursor. This rectangle is then
moved so that the corner defined by thecursorisrelocatedin grid corner 4.
This may sound complex but a little experimentation will show that it is in
fact aneat and simple means of moving the contents of the grid around. It
isimportant to remember that if the design is to be moved down two lines,
the bottom two lines of the design will be lost and similarly for moves in
other directions.

Lines 2070: Thislinedraws a large M next to the grid to show that the move
function has been called — it seemed like a good idea at the time. The
empty loop in this line serves the important function of separating the
input named T$ in the previous module and one called T1$ whichis about
to be called for. Without this delaying loop there is a danger that if the
user’s finger lingers on the M key when calling up this function, the

110

% gonie ot B SER

INKEYS$ function at line 2090 will define T1$ as M too. This delay is
necessary whenever using a succession of INKEYS$ inputs.

Line 2080: MX and MY are the variables which will be used to record the
distance the defined rectangle must be moved. X1,Y1,X2 and Y2 will
record the opposite corners of the defined rectangle.

Lines 2100—2130: These variables are set according to the corner specified
as the destination of the move and the current position of the cursor. Again
for no particular reason, the number of the corner chosen as a destination
is drawn next to the grid.

Line 2140: If an erroneous input is made when the program s expecting a
corner to be specified, the M is erased and control is returned to Module 4.

Lines 2150—2170: Having established the size of the rectangle to be moved
and the amount of movement necessary, these values are divided by fourso
that they can be applied to the array A and the transformation
accomplished in transferring the contents to the array B.

Testing Module5.1.5

The three functions specified in thecommentary shouldnow be available.

MODULE 5.1.6

) RE
2010 REM EXTRACT STRING
= REM

seze noriTselyoiafror ieolmoN a1 LET BT
ID=AC I . J>: NEXT .

52540 LET DImm: HL B RGDE LET e

DOTO LET X=0 LET ¥=0:LET D1=0:LET D2=a:L

=8 TO 21 :IF B Y.

>® THEN LET Ew=

D> L2 o,

R2O\90 IF I-Y>0 THEMN LET Es=Em+ '+ ELSE LE
T Em=E=m+—n

2100 LET ES=ES+MIDSCSTRB ABSC I—Y¥ 3>, 2>+";
=X

RO
P110 LET X=_t:LET “¥=1I

2 ac -
21230 IF Y+D1>=0 AND Y+[D1<

=21 AND_ X+D2>=e
AND X+D2<=31 THEN IF 8¢ vy+D1
—1

. HaD2>< > TH

=)
2140 FOR K=—1 TO 1:FOR L= TO
1S@ IF »+L>31 OR v-ﬂ_«a or Y¢V>31. PR YK

T GOTO o
0 IF BCY+K.X+L ><>8 THEN LET Di=K:LET

-—r

~
<>0IR AND DIR< >O THEM LET e

1
1
B . DIR. 1>+MIDS STR® NN+1 > 2> R

A2E@ IF HHN- >0 AND DIR<>@ THEN LET Es=Es+

1

MICBOLIT. OIR 1 3+MIDS. STRSECNN+1 >. 2>
PRt

e STRS

: LET %= LET Y=o :0RAL RETURM
Havmg estabhshed the functions necessary to defme and manipulate a

character on the grid, we come to the heart of the program, the module
which takes the design which the user has created and transforms it into a
string which, when DRAWn, will reproduce the desired character or
design.

Commentary

Line 3030: Since elements in the design will be erased from the array asthey
are incorporated into the string, the process is actually carried out on a
copy of the main array.

Line 3040: The letters contained in DI$ are the eight directions which can
be handled by the DRAW command. E$ will contain the string defining the
design or character.

Line 3050: X and Y are used to register co-ordinates on the grid. DI and D2
are used to record the vertical and horizontal elements of the direction in
which alineis currently being DRAWn.

Lines 3060 and 3250: Theloop defined by thesetwo linesscansthroughthe
grid, ignoring empty squares.

Lines 3070—3120: Forreasons that will be seen later, the factthat program
execution has arrived at this point shows that the square currently defined
by Iand Jisinked in but that it does not follow on in a continuous line from
any part of the design previously recorded in E$. Thelocation of the square
is thereforerecordedin the form of a B(lank) M(ove) within the string. The
first square to berecorded in this fashion will always be the top left hand
square in the design and its position will be defined in relation to the top left
hand corner. Other squares to be recorded in the BM format will be defined
in relation to wherever DRAWing last left off. The drawing position is
updated to the current square and the square is erased so that it cannot
figure twice in the design.

Line 3130: If the element at Y + D1,X + D2 is not zero, then since DI and
D2 contain the direction in which a line is currently being drawn, the loop
examining surrounding squares is jumped around.

Lines 3140-3170: If a current direction cannot be continued, this loop
examines surrounding squares to see if there is any direction in which
DRAWing may continue. If no such continuation is found then to E$ is
added the direction and length of the line which has been traced in the
design.

12

Lines 3190—3200: If it is possible to draw from the current square, the
direction is checked to see if it is the direction of a line currently being
drawn, if so the variable NN is incremented. If it is a new direction, the
direction and length of the previously traced line are added to ES$. The
value attached to any particular direction is calculated by the formula at
line 3190 and this value corresponds to the position of the relevant letter in
DI$ (defined at line 3040). It may be worth noting in passing that this
formula can come in useful in a variety of circumstances where a direction
onarectangular grid requires to be recorded. The values which the line will
produce for the eight possible directions are as follows:

1 2 k]
4 i 5
6 7 8

Compare this with the letters specified in DI$ and you will see why they are
arranged as they are. The variables D1 and D2 are vertical and horizontal
elements of the direction and range between — I and +1.

Line 3260: This line simply ensures that any DRAWing left unfinished at
the end of the loop is completed.

Line 3270: The design is now DRAWn next to the grid, using the new E$
which has been created. DRAWingitat scale 8 ensures that its proportions,
though not its size, are the same as the design created on the grid.

Lines 3280—-3300: The design is displayed until a key is pressed, then
control isreturned to Module 4. Note that the scale for DRAWing must be
returned to the normal 4 before a RETURN is made, otherwise subsequent
use of the DRAW command will produce oversize results.

Testing Module 5.1.6

Having defined a design on the grid, you should now beable to call up this
module by pressing key E and, after a lengthy pause, see it displayed at §
scale. Stopping the program will allow you to examine the E$ which the
module hascreated. Note that no check is made that your design is not too
complex to bedrawn by astring of up to 255 characters, so that too full a
grid might result in an error, though this is unlikely to happen.

MODULE 5.1.7

co0e REM

£@210 REM sﬁwE CHARACTER TO TAPE

cozZa REM

S058 MOTOR D, Ao ID BN LS INPIT “POSITI

ON_TAPE THEM FPRESS enter <MOTOR P
-5

£@<92 MOTOoR OFF . INPUT “START RECORDING TH
EN_ enter "

- o roToR DN EoR
@ OPEM 0" .f£—1 .

10000 MEXT

FasSa RETLPL

113

The function of this module is to allow the design which the user has
created to be saved on tape in the form of a string. You will note that the
module is more simple than many of the data file modules of earlier
programs, this is because its sole purpose is to save a single string.

Testing Module 5.1.7

You should now be able to save E$ on tape. This can be verified by calling
up this module, then stopping the program and clearing the variables.
Insert at 8888 a single line instruction to open an input file by the name of
CHAR and input E$, not forgetting to close the file. You may then print
out E$ in direct mode, or DRAW it to check that it has been satisfactorily
recorded and reclaimed. If this is successful then the program is complete
and you are ready to proceed to the second half of the high resolution text
section.

CHARACTERS: Summary of single key functions

With cursor flashing:

0 erases square on grid where cursor is situated.

1 inks in square on grid where cursor is situated.

R rotates design within grid by 90 degrees anti-clockwise.
M calls subroutine which moves design within grid.

1 transforms design within grid into its mirror image.

E creates string which will duplicate design if DRAWn.
S saves design on tape.

With large M drawn to the right of the grid:
1,2,3 or 4 specifies the corner towards which the design is to be moved.

Summary

This program is an odd one in that, as it stands, it is almost completely
useless. That is to say, all it accomplishes is to store strings defining small
scale designs or characters onto tape, hardly a stunning feat. In
combination with other programs, however, which will pick up the
characters created and compile them into usable character sets, and
modules which will allow you to use such character sets easily in high
resolution PMODEs, the program becomes an indispensable tool which
enables the Dragon to exceed its normal capabilities.

Going Further

1) A character creator is hardly much use unless you are prepared to sit
down and define some characters. Though this may seen an incredibly
difficultand boring task at first glance, a moment’s reflection will suffice
to realise that a complete set of characters, already defined in pixels, is laid
out before you in the listings given in this book. Alternative styles of

114

Chapter5 High resolution text

lettering can be found in the program listings in any computer magazine.
With such examples to work from, you really should have no difficulty in
building up a collection of worthwhile characters.

2) The program as given does not necessarily always make the best use of
the 255 characters of string space available for ES. This is because a blank
movealways uses the BM notation, which requires at least seven characters
(BM +2, —2) and possibly nine. An interesting challenge would be to insert
aroutine to test whether such a blank move could be covered by one of the
single-letter DRAW instructions. Theblank move given above for instance
could just as easily have been defined by BE2, which would result in a
considerable saving.

5.2 DICTIONARY

Having created characters it now onlyremains for them to be combined in
such a way as to be useful for subsequent programs. The program which
follows is designed to accomplish this by holding in memory up to 100
characters at one time, with the possibility of more being picked up from
tape in batches of one hundred. The characters so stored can then be
combined into collections such as ABCDEFGHI... etc to provide
material for high resolution programs which require text. In later
programs we shall examine practical modules for using such character sets
without constantly having to specify DRAW commands in the program.

MODULE 5.2.1

1938 CLS'PRINT a2."dictionary
RINT : PRIN

1230 PRI T TELNETToeAS AvAILABLE - ¢
1958 PRINT 1 >DISPLAY DICTIONAR

1958 PRINT 23BISkPiav chARmCTER SET®
1e7e PRINT 3 >L0AD-SAVE DATA"

1988 PRINT 4>INITIALISE"

1938 PRINT = >STOP

119 PRINT: INPUT “WHICH DO ¥OU REQUIRE ‘"
iZ:CLS

111®@ IF Z<4 THEN ON Z GCOSUB Z29000.2T00 .60
©0:GoTOo 1oee

1120 ON _Z—3 GATO 1%00.1140

1130 GOTO io0o

1140 CLS:PRINT ® 7%32+10, "dictionars ' PR
I FPRINT PROGRAM TERMINATED'

1 159 STOP
A standard menu module.
MODULE 5.2.2

1598 REM*¥
1is10 PEM INITIALISE

1S3 Pl‘LEﬁP 4 : CLEAR 1000

1540 DIM DISC 12A>‘DIM CHARS 40 >

1SS0 LET CI=0:LET DI=©

1s5sa GoOTo 1 oo
This module sets aside sufficient memory for the necessary PMODE and
reservestherest of theavailablememory for strings as well assetting up the

necessary variables.

115

The Working Dragon

Commentary

Line 1540: The main dictionary of characters will be held in the string array
DIS$. The number of elements which this array will be capable of holding
will depend on the complexity of thecharacters and, therefore, the length
of the strings required to DRAW them. The character set currently being
compiled will be held in the string array CHARS.

Line 1550: CI and DI record the number of characters stored in the
character set and the dictionary.
MODULE 5.2.3

ERENEN RS I K K AR R 0 0 K AR KA
Za1a REM DISPLAY DICTIOHARY
REM

Pr‘Le SCREEM 1.0

5
Etm--o-f:Tny(B2HCC IS >—BRIHTCC I—S
CASTRECADTEIMTAC I-—S > 2> 5+ “+DI®

—R2XINTC S -R2 >

f=d=bod NHEEYS IF Ts<>"" THEN GOTO 2
1=

2102 I=1 TO =2

2112 DR T ASTRSC T S+ BMY+STREC 232%CS1 —

SXEINTC S1 RO+ O+ . "+STREC ASKITHTCS1 -2 >+

2120 1 TO 25 HENT O

2122 <

214 GOTO 2asa

2152 LET S1=S1—-7 TE=CHRSCI 5 54+ THaCHRS ™ 5 >
LET 1-CS1<@5+0=1>21 >

2162 IF T=="0" THEM FOR I=S+S1 TO DI—1:L

ET DIS< IS>=DI%? I+1 5> -HEXT T:LET DI=DI—1 GO

2172 IF Te=eCr THEM IF CI<=4@ THEN LET ©
HARS: CI >=D 1% S+=1 > LET CI=CI+
122 IF Tszr:ru?’(. 185 THEH LET S=S—22%cS<1

" 1322 0Rec 5a s THEM LET S=ssmzwcss>a
ac

tTHEM RETLUEH
2212 coTo z2esa

The purpose of this module is to display the dictionary of characters page
by page and to move a cursor around the page allowing the user to specify
characters for a number of simple operations.

Commentary

Line 2060: The fairly involved figures which are to be included in the string
to be DRAWn simply specify that each character to be drawn will be placed
32 pixels to the right of the last, or at the start of the screen and 45 pixels
down if the end of a line has been reached. This allows for the full 32*32
grid on which the character was designed plus room fora moving cursor.

Line 2080: While the variable S records the absolute position of the
character currently pointed to within the dictionary, S1 is used to indicate

the position of the cursor on the screen.

116

Chapter 5 High resolution text

Line 2100-2130: A flashing cursor routine which uses the value of theloop
variableI to set the colour with which the cursor is DRAWn and thus needs
only the one line to DRAW and reDRAW to invisibility.

Line 2150: The cursor move line, based on the left and right arrowed keys.

Line 2160: Input of D will result in the deletion of the character to which
the cursor is pointing from the dictionary.

Line 2170: Input of C adds the character to which the cursor is pointing to
the current character set.

Lines 2180-2190: The up and down arrows are used to move to the
previous or following page of the dictionary.

Line 2200: Input of Q returns program execution to the menu.

Testing Module 5.2.3
Sinceno characters have yet beenloaded fromtape, it is difficult to test this
modulebut sincetherearealmostbound to beerrorsin entering it weshall
adopt the temporary expedient of entering some simple specimen
characters with the following line:
8888 LET D$= “BM + 1, + O;R0;*:FOR H=0 TO 7:LET E$=*":FOR
1=0TO I3LET E$=ES$ + D$:LET DIS(H*14 + 1) = ES:NEXT [:NEXT
H:LETDI=110

Thisline, provided that the program has been initialised, can be called in
direct mode or even called as a subroutine from the initialisation module
and will load the dictionary with 112 characters which are actually sets of
14 lines of increasing length traversing the 32*32 pixel space diagonally
from the top left corner.

Having run line 8888, calling up this module should display the first page
of the dictionary and allow the full range of functions specified in the
commentary.

MODULE 5.2.4

RE|
2519 REM DISPLAY CHARACTER SET
2522 RER

252@ PMODE_4.1:.PCLS:SCREEN 1.0

2542 FOR I=0

2=Sa DRAL! em' -==TP.< DA I_BRINT I8 3> >en

LU+ STREC 32 INT< I.-8> fr U +CHAR®SC T

2=68 NEXT I

2570 LET TH=INKEY®:IF Te="" THEN COTO 2=

¢5ee- IF Te="0" THEN LET CI=o
2592 RETURN

Having begun to build up a character set from the main dictionary, this
module allows the user to display the current state of the character set.

117

The Working Dragon

Commentary

Line 2580: Input of D while the characterset is being displayed will result in
the character set being deleted. Note that this is achieved simply by setting
CI to zero. There is no need to physically wipe out the character set.
Pressing any key other than D will return to the menu.

Testing Module 5.2.4

You should now be able to create a character set from the main dictionary
and display that character set.

MODULE 5.2.5
OO R Mok 4 5 o 0 A A K

Rt
o3 T LS INPUT “POSITI

ON_TAPE THEN PRESS enter <(MOTOR IS OND>:
=t

S©40 MOTOR OFF INPUT “PLACE RECORDER INT

0 CORRECT MODETHEN PRESS enter' (@S

SOS8 PRINT :PRIMT "FUNCTIONS AVAILABLE ' .
1 YSAVWE CHARACTER SET™ . "2>5L0AD NEW CHARA

CTER'" . "3 >SAVE DICTIONARY' . "4>L0A0> DICTIO
NARY " INPUT “LIHICH DC Y0OU REQUIIRE: " :@:0ON
2 GOoTOo 5n7e S1%0. 5210 . 5290

so7e MOTDP ON-FOR I=1 TO 10000 :'HNEXT
S92 OPEN_ "0Q" ., £~1. "CHARSET"

= =
5100 FOR I=8 TO CI—
2178 FRINT 2-1 rhAmecT>

® CLOSE £-—
PN

0
ar
m
4

® IF DI=1980 THEN RETURN
OPEN_“I".£=1."CHA

INPUT £-1.Dw

CLOSEE£—

CET CIadc: s=bs LET ©I=0DI+1

QUDNNULY
0000

218 MOTOR ON:FOR I=1 TO 10008:NEXT I:0F
EN

RO, " FOR k=0 TO 2:L

Fo CLET Em=E®+D®:LET
DImCH*14+1>=E®-NEXT I NEXT H:LET DI=<40
£350e RETURN

This is our standard datafile handling module expanded totakeaccount of
the fact that we now wish to load or save four different sets of data —
individual characters from tape, character sets to tape, the dictionary from
tape and the dictionary to tape.

118

Commentary

Lines 6070—6140: This section saves the current character set to tape,
together with the variable CI, which indicates how many characters it
contains.

Lines 6150—6200: This section loads a single character from tape and
stores it in the dictionary.

Lines 6210—6270: This section stores the current dictionary onto tape.

Lines 6280-6340: This section loads a dictionary from tape. Note that a
new dictionary can be loaded during the creation of a character set, thus
allowing the character set to draw upon a wider range of characters than
can be contained within one dictionary.

Testing Module 5.2.5

You should now be able to pick up characters created by the previous
program, compile them into a dictionary or dictionaries and, using these
dictionaries compile your own character sets and save them on tape. If
these functionsareall available, the program is correctly enteredand ready
for use.

DICTIONARY: § y of single-key f

With flashing cursor:

Left and right arrows move cursor.

Up and down arrows move display to new page of dictionary.
D deletes character above cursor from dictionary.

(© adds character above cursor to current character set.

Q returns control to menu.

No flashing cursor (character set display):
D deletes current character set.
Any other key returns to menu.

Summary

This is an uncomplicated program for the simple reason that it is designed
toleave the maximum amount of space for the strings containing the actual
characters themselves. Onceentered you are ready toembark on the task of
creatingand compiling setsof characters for use in high resolution mode.
As previously mentioned, later programs will take you further by showing
somepractical waysto use such character sets without having to specify the
DRAWing of each character separately.

119

Going further

1) As with the character creator itself, this program will only come into its
own when you get around to compiling a dictionary or two.

2) Text is not the only area where the programmer might benefit from
having a set of characters available in high resolution modes. What about
developing sets of symbols for electronic diagrams, for instance.
Remember that, using the DRAW command such symbols can be rotated,
so that a single symbol is all that will be necessary for each component, no
matter what its orientation may be. You could, perhaps, add the ability to
DRAW such characters to a program such as Designer thus allowing
symbols and text to be made an integral part of the designs created using
that program.

CHAPTER 6

Handy programs

Inthis chapter we turn our attentiontoa collection o f programs under the
general heading of ‘utilities’, designed to display a few of the wide ranging
uses to which the Dragon can be put around the home.

In most of these programs we shall be employing techniques which we
have already come across and, apart from such explanationasisnecessary
to understand the functioning of the program, comments will be
accordingly brief.

6.1 NAME AND NUMBER

Onceagaina general purposetool which enables a dictionary to be built up
of items together with the units in which they are usually measured and an
associated quantity. Current working lists can be constructed out of the
dictionary items. At first sight this might not be a very inspiring prospect,
but on reflection you may find that there are already a number of areas
where such a program could come in useful. One might be the field of
calory control, where the Dragon is capable of storing a dictionary of up to
500 foods, together with the units in which they are usually measured and
the calories per unit. A day’s calorific intake can be easily calculated by
usingthe current list facility to construct a list of the day’sor the week’s
food and automatically calculate the number of calories involved. The
program is also useful in calculating total prices for orders where the total
stock of items does not exceed 500 types.

MODULE 6.1.1

A R R R e e e e R

REM DATA FILES

IR 154 5 44 S S 5 A A KK K R R K

AUDIO OH: FMOTOR ON: FRINT : INFUT “FOSI
TAFE THEN PRESS enter <MOTOR IS ON

o4 3 eLmcE PEFDPDEP IN CORR
ECT MODE _THEHN PPE9¢ en g
S© FRINT :FRIN FomMC TIons AvAILABL D5

A", .U 23L0AD DATA" : INFUT ThTe
H DO YOU RERUIRE - ".Q:0MH Q GOTD S070.61%0
1

©70 MOTOR ON: FOR I=1 TO 10000:HEXT I
S e

To CUPP—] PR
1,,fo> HNE>

TFAOR 1=0 TO tTEme—x-
P b = -

I
Z©® CLOSEE£~-1

121

The Working Dragon

RETURN

I.1%2.C<I % HE

A standard data-file module.

MODULE 6.1.2

TOOO R Mk ok o 5 5 KK K R R

Tel1e REM FORMAT TITLES

Toze RE A

O3 LET P2=14—IHTCLEMT F® 123

740 PRINT @ SZ¥P1+P2.STRIMGHCLENIFS »+2.

TOSAa PRIMNT ® 32¥%¥<FP1+15+FP2. CHRS 150 2+F$S+C
TOEG PRIMT @ 32%CP1+2>+P2.STRINGSILEN: F®

=i
FTore RETURH

A standard title-formatting module.

= =]
12a LET F=% PROGRAM HOW STOPPED":LET F1
10 cosSuEe 7ooa
190 EHD

MODULE 6.1.3
1000 REM
1010 REM MERL
1ez0 RE
1eze C LET Fs="HAME AND HUMBER" LET P1
=82 :cosSUB
1240 3 PRIMT "COMMAMDS AVAILABLE =
1es50 q 1 >DISPLAY CURREMHT LIST"
1esa 253IMPUT TO CURREMT LIST™
107e 2OSTART FRESH LIST"
1020 4 >DELETE FROM CURREMT LIS
T
109a SOEXTEMD DICTIOHARY "
1100 EODISPLAY DICTIOHARY"
111@ >
112e >
1132e T >ST
1149 IMPUT “"WHICH DO YO FEGQUIRE:":Z CLS
1150 0OH Z GOSLUE Z000,2500.2000. 5500 . 2500
. S000.5000, 1500. 1170
115@ CLS GOTO 1000
1170 CLS LET F%="HAME AHD HUMEER" LET F1
-5 - GOSL 7o
1
1

A standard menu module.

MODULE6.1.4

REM
REM VARIABLES

CLEAR 190000 LET FLAG=O0
15.0CCS00 >, THCSO. 1 >. T< S0 >

o
=]
O REM*¥*
=
=3

ITEMS=2
CLE A%< 1.0 >="ZZZ72Z
1570 IF FLAGe1 THEN cOTO c1320
1580 PRIMT : IHPUT E FOR ITEMS";: HAMES

NHME FOR ASSOCIATED

1=06 GoTOo

122

The purpose of this module, apart from initialising the variables to be
used, is to allow the user to specify the type of item the program is to be
applied to (e.g. FOOD) and a general name for the units of measurement
(e.g. weight unit). The actual unit of measurement will be specified
alongside theitem as it is entered and can differ fromitemto item. Thus, in
the case of food, some items may be measured in ounces, some in pints etc.
Youmay liketonotein passing thatin line 1550 avariableis declared with a
value of zero. This does not need to be done since the first time the Dragon
encounters the variable name it will assume the value to be zero anyway.
The question is, however, is a program easier to understandif all the major
variables are listed in the initialisation module or is this a waste of space?

MODULE 6.1.5
3500 RE
351@ REM EXTEND DICTIOHNARY
3520 REM
3IS2@ IF_ ITEMS=S2a THEN PRINT "HO MORE RO
OM IN DICTIONARY. " :FOR I=1 TO SO00:NEXT :
RETLIRN
2S40 _CLS: LET F®="NEW ITEMS FOR CICTIONAR
YU ILET P1=0:COSUB 7000
3559 PRINT PRINT NACES, 3 NAME OR 2 ZZ

TO @UIT>: PUT Fs
PETI RN

3SSO PRINT :PRINT o
2FSTO PRINT : PRINT

Zzzz" THEN

NTITYs " TN
QUANTITY PER *

UT G
PG TP

N

S86 PRINT: INPUT “RPE THESE CDPPECT < v
SQEIF QE="THN" HEN GOTO 235

2590 CLS:cOosSue 4eeexfosns 4uee

23600 LET ITEMS=ITEMS+1:GOTO 3540

This module accepts inputs to the main dictionary of foods and calls up
later modules to actually insert the items. In the case of the food example,
the prompts for this module would be “FOOD:”’, “WEIGHT UNIT:”
and QUANTITY PER (whatever is input under weight unit)”’.

Testing Module 6.1.5

You should now be able to input items under your specified prompts,
though they will not be stored in the main arrays.

MODULE 6.1.6

4@10 REM BINARY SEARCH

4030 LET POMER=C INTZILOGS ITEMS—-1 >-LOG< 2 >>

4040 LET SEARCH=Z2"FOWER
485 FOR I=FPOWgR—-1 TO © STEP -1
4Ps@ IF Hs<sEa ICH. @ ><F® THEM LET SEARC

1670 1F Fncf SEARCH. ® >>F% THEN LET SERARCH=

2650 TF SEARCH<1 THEM LET SEARCH=1
409@ IF SEARCH>ITEMS—-1 THEN LET SEARCH=I
TEMS—1

4120 RETURN

123

A standard binary search module, less the section which actually inserts
items into the file. This is held separately because the binary search module
is used by several modules, not all of which require an item to be inserted.

MODULE 6.1.7

2S00, [RETT Aok Aok ok Eok e sk sk ok b ok
REM SER

INT(QERRPHﬁ*x =TEF -
LET A®C I.1 =A% I

ResT 1

F4: LET AS<SEARCH. 1

>=G®: LET C<SEARCH >=HH
455 RETURH

This module actually inserts the new items into the main dictionary.

Testing Module 6.1.7
You should now be able to insert items and find them stored in the main
arrays.

MODULE 6.1.8

oo REM************************
S©1© REM IUSER SEAI

20 FEmMu s mt s b s e b b A K

S©32@ LET SEARCH=1

S©40 CLS:FRINT:FRINT "ONM APPEARANCE 0OF I
TEM. IHPUT:.

SOSe PRINT @1T%232. "TOTAL ITEMS: " ITEMS—=
SO5e PRINT @ 1%32."> ENTER’' FOR HNEHT ITE

>ITEM TO BE SEARCHED
>POSITIWVE TR _ HEGATIVE NumEEP
Rt

1 0D QAUIT FUNCTION'™

1 4

1 i INTCSERARCH >

1 AR SEARCH. © >

1 QURNT I T + A SEARCH . 1 >

1 CRUANTITY PER " A%< SEARCH. 1 >
5169 INPUT “LHICH DO YOU REQUIRE: “;F=
S170 [OPB THEN For I-SEARCH TO IT

EMS—2:LET ASC I .G >=A% I+1, 0> LET A% I.1 >=
AMC I+1.1>:LET C<I>=C<I+1>:HNEXT I:LET ITE
Ms—ITEMs-1xGGTU Seao

Fe="2ZZZ" THEN RET

€ RN
= THEN LET SEARCH=SERARCH+1 I
SEARCH>ITEMS—2 THEH RETURN ELSE GOTO S
=3

sz2ee IF LEFT!(F"I. ><>"£" THEN GOSUE 4000
s210 LET sEﬂPcH—sEﬁPcHovRL<MID-<F-,2>>
S220 IF SEARCH>ITEMS—-2 THEHN LET SEARCH=I
TEMS~—-2

S230 IF sEﬁRCH<1 THEN LET SEARCH=1
S24© GOTOo

A standard user search module with the one difference that an actual
search for a specified item is carried out using the Binary Search module.
Testing Module 6.1.8

You should now be able to display data entered, to page through the
dictionary, to jump backwards and forwards, to discover a named item
and to delete items at will.

124

MODULE 6.1.9

2S00 RE
2510 REM EXTEND CURRENT LIST

CURR== e THEN PRINT “CURRENT LIST
:FOR I= TO SO000:NEXT:RETURN
E—lExTerD CommemT LISTrYreT F1
==

. T F
=0 : GNSUB 7o
250 PRINT:PRINT NAMES, : INPUT
2560 GOSUB <4000:1IF A< SEARCH. 9><>Fs THEN

FRINT ® 10%32, NAMES; " UNKNOLWN——PLERASE C
HECK. " . FOR I=1 TO S000 NEXT I:RETURN
2579 PRINT :PRINT QUANTITY®: ": " ;AS< SEARCH

2380 PRINT. IMPUT UANTITY : »:Q
2590 PRINT: INPUT ARE_THESE CORRECT < ¥~
H>: ", Q% :CLS: IF Q=®="N" THEN GOTO =300
2600 LET T®<CURR.O® >=A®%< SEARCH. © > ET T=
CCURR. 1 >=STRBCQ>+" "4+A%< SEARCH. 1 >:LET T<
CURR >=Q*C< SEARCH > LET CURR=CURR+1

2610 PRINT:INPUT "ANY MORE ITEMS <Y~-ND>:"
QB CLS:IF QEm="%" THEN GOTO 2500

2520 RETURN

This moduleinputs items forinclusionin the current list, that isa working
list of items contained in the main dictionary, which can be manipulated
without corrupting the data contained in the main dictionary. In the case of
the food example, the user would be required to supply the food type, the
program would then supply the unit of measurement and the user would
specify how many of those units were to be included.

MODULE 6.1.10

RE
2010 REM DISPLAY CURRENT LIST

2020 REM
2030 IF CURR=0 THEN RETURN
TO CURR-1

<T T
2120 PRINT “TOTAL GQUANTITY . ", SUM
2130 ‘PRINT: INPUT "PRESS enter TO CONTINU

as
2140 RETURN

Thismoduledisplaysthe currentlist, item by item, and totals the quantities
involved (calories in the case of the food example). The user is required to
pressany key to display the next item in order to prevent the list scrolling up
the page too fast to be read.

Testing Module 6.1. 10

You should now be able to load items from the main dictionary into the
current list and to display that list.

MODULE 6.1.11

3000 RE
3010 REM INITIALISE CURRENT LIST

125

I=2 TO SO LET T®< I.o>= ET Tw
FLET TCID>=@:NEXT I LET cuPP=a RE

This module initialises the current list only.

MODULE 6.1.12

Ssee REM
S3510 REM CURRENT LIST DELETIONS
S520 RE
S53© FOR I=8 TO CURR—1:PRINT T®<I.Oo>
SS54©@ PRINT T®<I.1>
SSS© INPUT "Jdad=DELETE-enter=NEXT - zzz=aU
IT Q& :IF Q®="ZZZ" THEN RETURN
SSse xF Q. THEN NEXT I'RETURN

CURR—1
5500 LET Tei . @reTeciri.@>
SSSe LET T®c . 1s=Tmc v1.05>

T
5225 LET clURR=cURR—1
SE38 RETURN

This module accomplishes deletions from the current list.

Testing Module 6.1.12

You should now be able to delete items from the current list or to initialise
it.

Summary

The program is yet another good example of the power of modular
programming since most of the modules have been lifted, with very little
modification, from other programs in this book.

From this youmay draw the valuable lesson that, provided you clearly
distinguish the functional units of a program, it is always methods that are
more important to your progress as a programmer than the actual number
of programs you have written. A good library of programs will stand you
in good stead until a totally new application comes along. A good
collection of methods, contained in clearly identifiable modules, will never
let you down. So don’t limit yourself to methods which you need for only
present day applications. If you see an interesting way of doing thingsin a
magazine or book, write a simple program to use it, just for the hell of it.
Within aweekortwoyoumay well find that it is just what youarelooking
for, for that new program that is giving you so much trouble. .

6.2 TYPIST

Thaveto confess that I am inordinately fond of thisprogram. Its presence
here proves that a program doesn’t have to be long to be useful — this one
isshort, neat and outstandingly good at whatitdoes. . . .and what it does is
help you to learn to touch type.

126

Chapter 6 Handy programs

MODULE 6.2.1

RE

REM PRINT KEY BOARD

REM

CLS'PRINT ® RA. CHRSC 138> STRINGSC 2

>1 CHR®C 1 @3>

LET AS="1234S67R902 ' —b" PRINT CHR®Cd 1
2 I=1 TO 13:PRINT CHR®C

1 > -NE><1— I:PRINT CHR®C 175

HR®C 14

Am- QIJEPTYUIGPQ"-H-HP-(IS >+CHR®

NT CHR®< 132 I=1 TO 14 'PRIN
:)x-NEy:'r I PRINT C
>

99~ NND 9999

SDFGH_IKL 3 * « PRINT CHR®C< 139

I=1 TO 11'PRINT CHR®C17
FNEXT I PRINT CHR®C 175>
)= CHR®C 1755 CHR=SC 133 >

- 097

SBNM. .~ PRINT * ') CHR®IC
;FQR T=1 To 1n-PPtN‘r
- . T.1> NEXT TN
Fieec i 755 ChiRes 125 5 Curec 15

CHIZHC 122> STRINGSC 27, 17 2>

cma] A yeTAN A, b

All that this module does s to print a fairly crude-looking representation of
the keyboard at the top of the screen. You will note that the down arrow
and the right arrow are not represented properly because they are not
available in the character set.

MODULE 6.2.2
Zooa RER
Z21a REM ACCEPT INPUT
Zoza RE
=3 2 LET SLM=2.LET RIGHT=Q2:'RESTORE
Zo4a READ Am: IF AS="STOP" THEN RESTORE 'R
EAD A=
ZasSa IF LEN cAm>>31 THEN PRINT "“STRING T
o0 Lo ST
z2osa ® 9%32.STRING
=22,
zara
zoza OR Te=CHR®<S
> TH
zasa 15,1
2102 THEN GOTO 2120 E
LSE
21192 - TR OR TH=CHR®CR
> THEN GOTO 2119 ELSE PRINT CHRSCS >, CHR®
cm>: (GOTO Zasa
2120 LET RIGHT=RIGHT+1-IF T®<>" “ THEN P
RINT T=: EL SE PRINT CHR®C 159>,
Z213Pa NET
2132 PRTAT e 1232 . INTeRIGHT SUM%10@ >, »x
ElS@ _INPUT “HORE CY-N> "iQE. IF Q@<>"Ne T
HEN GOTO zZo

This module displays a line of text on the screen underneath the keyboard
for the user to copy.

Commentary

Lines 2040—2050: Text to be copied is entered in the form of DATA
statements after line 3000. Text must be no more than 32 characters long
for any one unit.

Line 2060: The next line is cleared for the user’s input.

127

The Working Dragon

Lines 2070—2180: The INKEY$ function is used to obtain any character
which the user inputs. The character is displayed on the screen underneath
the line to be copied. If it corresponds to the next character to be typed in
the text to be copied, then the program moves onto the next position. If the
input isincorrect an arrow is placed next to it and the program stays with
that position until the correct character is entered. Correct keystrokes are
recorded along with the total number of keystrokes, and the percentage
success rate is displayed at the end of the line.

MODULE 6.2.3

pEm***x**x**x**x**x**x**x**
REM DATA FOR TES

R
DATA "THIS IS A DRAGON TYPIHG TEST"
DATA "_1UST TYPE LIHAT YOU SEE"™

DATA "CON-'T LOOK DOWN AT THE KEYEROA

DATA “STOP"

This is included as an example of what may be entered. Note that the text
must end with a DATA statement with STOP in it — this will redirect the
program to the beginning of the material again.

Going Further

1) What about including some reference to the Dragon’s timing function,
so that an assessment of speed can be made.

2) Perhaps when a wrong key is depressed it could flash, thus giving the
user a better indication of where he or she is going wrong.

3) Farbetterthanrandomsentences would be to enter some exercises from
a good typing tutor.

6.3 TEXTED

Another useful and none too lengthy contribution in the text field, this one
thinks that it’s a word processor. Indeed it is capable of apeing many of the
abilities of more expensive systems. Built into it are some features of
specialinterestto those who own, or hope to own, a printer to go with their
Dragon.

MODULE 6.3.1

RE!
1©1©® REM INITIALISE
120 RE

cLs
124® PCLEAR 1 :CLEAR 20000
10S©® DIM TEXT®(SOO >

ET LL=1 -

E
19090 GOQIJB 212
This module initialises the main array TEXTS, which is used to hold the

text input by the user. The two strings stored in positions zero and one are
simply visual markers of the beginning and end of the text.

128

Chapter 0 Handy programs

MODULE 6.3.2
15 REM
151 REM EDIT LIHE
152e REM > <
133 LET Am='
1332 LET Poo PRINT = 12%32; A%
15> TeE=INKEY®: IF T= EN POKE

e LET i1e

2a+i12¥I2+P. 175 : POKE Tel3Tiowxto5F. R2EEMIS

= AS.P+1 55:G0O0TO 153

1560 IF LENC A% >=6S OR TH=CHRSC 13> THEN G

osuB zZaea

1578 IF TE=CHR®< 94> THEN GOSUBR 2%aa

158@ IF P<LEHNCA® >—1 AND Te=CHR®C 12> THEHN
LET AS=LEFTSCA®, P>+MID® AS.P+25>:GOTO 16

=)
159a T >CHRMC 2> AND TH<>CHR=CS > AND
232215 ><R2 OR ASCC raSsas ThEn . GoTo 154
160 I1IF Tec > AND TH< >CHR®CR > AND T=< >
CHR®C 9> THEN LET AS=LEFTSCA®.P >+TS+MID®C
AS.P+15:LET Pw=Pa1

1€1a PRINT ® 12%32.A%

1628 IF TE=CHR®CS > AND P<LENCA®>—1 THEN
LET P=P+1

16230 IF TH=CHRSC(S> AND P>& THEHN LET P=P—

1
1640 GOTO 1=Sa

The function of this module is to allow theuser tobuild uptwolines of text
at the bottom of the screen, including the ability to edit them, before they
are placed into the main body of text at a specified point.

Commentary
Line 1550: The purpose of this line is to flash a cursor over the letter of the
string A$ pointed to by the variable P.

Line 1560: A string is entered into the main body of text either when the
user presses ENTER or when the length of the string reaches two lines of
display.

Line 1570: Pressing the up arrow key calls up another part of the editing
mode which will be discussed later.

Line 1580: Pressing the CLEAR key results in the deletion of the letter over
which the cursor is currently flashing.

Line 1600: If aninput falls into the group of normal text characters, then it
isadded to the string being built up.

Lines 1620—1630: Theleftand rightarrowed keys move the flashing cursor
alongthe line in the desired direction.

129

Ihe Working Dragon

Testing Module6.3.2

Enteringa temporaryline2120 RETURN should allow youto build uptwo
lines of textinthelower part of thedisplay. Youshould beableto move the
cursor backwards and forwards over the string, to delete letters or words
and to insert letters or words, either at the end or into the middle of the
string.

MODULE 6.3.3

RER
2918 REM INSERY L INE

o R
2038 IF LENCA®m>>3A THEN LET X=2 ELSE LET

FOR_I=LL+> TO Pl_nch-x STEP —1,LET T

ERTacT SmTEXTMC I—> > 1 NEXT
2OeSe IF LENCA®m>>33 THEN LET TEXTECPLACE >
=LEFTRCAM.3A2>: LET TEXT®PLACE+1 >=MID® A®

. BA,LENCAM>-33 > ELSE LET TEXT®JPLACE >=LE
FTmc Am. I_EN(R. >>
2068 FOR _I=0 TO »—
2820 P RICHTRCTE S THC PLACE+T >, 1 == =
N LET TEXT@CPLACE+I >=LEFT®C TEXT®C F'LF"‘E-&I
> LEMNC TE><T-< PLACE+I >>~1 >:GOTO 287
=]

2e%e LET ﬁtu" CCLET Pme i PRINT @ 13%32. "
cPRINT ® 12%32. Al

108 PRINT ® 14%32. "

18 LET LL=LL+X 'LET PLACE=PLACE+>

28 IF PLACE<S THEN LET START=0 ELSE LE
START=PLACE—-S

38 CLS:'FOR_I=START TO START+S . PRINT TE
W2 T 55 - IF LENC TEXT®C I >3<32 THEN PRINT
I=PLACE—1 THEN PRINT CHR®SCG2>

S8 NEXT I :PRINT STRING®C32.CHR®C17%>>
68 RETURN

N
&
I

MNRXNANBN -
A
ol
-

[Sreteestraying

This module inserts theline of textbuilt up in thelowerhalf of the screen
into the main body of the text and prints a part of the main body of text in
the top half of the screen.

Commentary

Lines 2030-2050: Depending on whether one or two lines of text were
entered onto the lower part of the screen, a space is made for it (them) in the
main array at the point indicated by the variable LL.

Lines 2060—-2080: The newly entered lines are stripped of any trailing
spaces which take up memory unnecessarily.

Lines 2090—2100: A$ is reset equal to one space (note that here and in line
1530 A is not an empty string — it is made up of one space). And both of
the lines used in the lower half of the screen are cleared.

Lines 2120—-2150: The portion of text around the newly inserted lines is
reprinted on the upper half of thescreento include them.

130

wrlapier U riaridy proyratiic

Testing Module 6.3.3

You should now be able to enter your text onto the upper half of the
screen by pressing ENTER when you have built up a satisfactory string at
the bottom of the screen.

MODULE 6.3.4

2Toa REM*
2512 REM MOVE EDIT L INE
220 R M K R K R K K R R R

2322 IF PLACE<S THEHN LET P2=PLACE ELSE L

ET P=2=35
SSan LeT Tis=IHKEYs IF Tim="" THEN PRIHT
® P32 PRIMT ® P2%X322,">"'GOTO 2242

HR®<94> THEN LE

THEN LET PL

THEN cosuB
THEN GosSUB
THEN GOoOsSuR

=
iCLOSEE-2
a

Apart fromcalling up three more edit functions which have not yet been
entered, the purpose of this module is to move a flashing > cursor up or
down through the main body of text. The position of the cursor indicates
either where new lines are to be inserted or where other edit functions are
to be carried out.

The module is called by entering the up arrow in the course of Module
24

Commentary

Lines 2550—2580: The cursor can be moved by means of the up or down
arrows (one space) or the Q and A keys (10 spaces).

Line 2600: Input of D results in the deletion of the line immediately below
the cursor.

Line 2610: Input of C results in the line immediately below the cursor
being recalled to the bottom of the screen, although it is not deleted from
the main body of text.

Line 2620: Input of F calls up the text formatting module.

131

fhe vvorking vragon

Line 2630: Input of P resultsin the current text being printed on a printer if
connected.

Line 2640: Input of S calls up the data file module.

Testing Module 6.3.4

Having entered some text you should now be in a position to move the
flashing cursor, to delete lines and to recopy to the bottom of the screen
lines previously entered.

MODULE 6.3.5

2 RE| 4 A A
3918 REM FORMAT LINE

RE
3930 FOR I=1 TO LL—2

BS4® IF LEFTEC TEXT®II >, 1 >=CHR®< 126 >THEN
GOTO 3120

30TO IF TEXTEC I >="" OR TEXTEC I+1>="" THE
N GOTO 3110

3050 LET SPACE=22-LENC TEXT®CI >>

30680 LET ITEM=INSTRS TEXT®C I+1>. " >

305© IF SPACE>=ITEM AND ITEM>® THEN LET
TEXTSC I SmTEXT®C I >+ “"+LEFT®C TEXT®C I+1>. T
TEM—1>:LET TENXT®SC I+1 >=MID®C TEXT® I+1 >, IT
EM+1>:GOTO 3060

3190 IF LENCTEXT®SCI+1>><SPACE THEN LET T
EXT®C I >=mTEXTSS I >+ CeTENTEC T+1>:FOR_ Je I+
1 TO LL'LET TEXT®< J>=TEXT®C J+1>: NEXT J:rL
ET LL=LL—1:LET PLACE=PLACE~1:'GOTO305s8

NEXT T
3120 cosSuB 2120
3130 RETURN

Theeffectof thismoduleis to examine each line in the main body of text,
together with its following line, and to determine whether the transfer of
the first word from the following line would make the first line longer than
32 characters. If it is possible to transfer the first word, then this is done. If
it is possible to transfer the whole of the following line into the first line
without exceeding 32 characters, then this is done. Only in the case of an
empty line will the program not attempt to run together the two lines of
text. Empty lines are therefore used to separate paragraphs and the like.

Although not perfectly right-justified, text which has been processed
with this module will be quite tidy. The module therefore allows the user to
enter text without too much regard for appearances, knowing that the
module can be used to tidy up the text later.

Testing Module 6.3.5

You should now be able to input a series of individual words on separate
lines, call up this module and see them formatted into a single line. Single
words on separate lines can be inserted into the main body of text or lines
modified to include a word overlapping onto the next line and this module
used to reformat the text. No formatting should take place for the lines
immediately before or after an empty line entered into the array.

132

M TP -

MODULE 6.3.6

2asea RE

2510 REM DUTPUT TDO PRINTER

2520 RE

2S3I0 OPENM "0O". £~2, "TENTED"

IS0 LET =1
X=LL THEN PRINT £—2."" .RETU
TEXT®IX>=" THEN PRINT £-2
EBTh 9550 ELSE PRINT S-2. TETeIN
HMalmLL THEN PRINT £—2," " RETURN
TEXT®OX+1>m " THEN PRINT £—2, "

PRINT £-2."":-ELSE_PRINT £—2. TEXT®I>+1>

ABSO LET =X+2:G0TD 3ISS0
2B\ PRINT £-2, "
618 RETURN

Input of P from Module 4 willcall up thismodule, which willinturn print
the main body of text on a printer. Note that since the width of text on a
printer is usually at least double that of the Dragon screen’s 32 characters,
two array lines are run together for each line printed (except where one of
the two is a blank line).

MODULE 6.3.7

o RE
so10 PEM DATA FILES

sa3o L_S MOTOR ON:AUDIO ON: INPUT "POSITI
ON TAPE <MDOTOR IS ON> THEN PRESS ent
e iam

€040 MOTOR OFF . AUDIN OFF: INPUT “PLACE RE
CORDER IN CORRECT MODE THEN PRESS enter

£SO INPUT "1 >SAVE~-~ -2 »RECALL :
132

Q0N Q
€070 MOTOR ON: FOR I=1 T0O 10000 NEXT I:0P

sog SLL
€092 FOR I=1 TO LL—1 PRINTE~1.TEXT®CI >N
B3

ExXT I

&100 -1

110 rnsus 2i3e

€120 RETURN

6130 DPEN "I".£—1."TEXTED"

€140 INPUT £—1,PLACE.LL

€10 FOR I=1 TO LL—1: ' INPUT £—1,TEXT®<I>:"
NEXT I

S1se cosus 2120

S170 CLOSE £-—

€120 LET TEVT.(LL>=¢YPINF.<32 CHR®C< 126 >>
€190 RETURI

A standard data-file module.

Summary

This program is a tribute to the speed of the Dragon, without which many
of the processes involved, including editing on the screen, with its resultant
constant reprinting of the string, would be painfully slow. The techniques
of on-screen editing bear some study, since altering something while you
look at it is by far the easiest way of making changes to almost anything and
could be incorporated into a wide variety of programs where strings have
to be changed — including most of the programs in this book.

133

g T TSR (PR L,

TEXTED: Summary of one-key instructions:

With flashing cursor at bottom of screen:

Text characters may be entered at position of flashing cursor.

Left and right arrows move cursor over string.

Up arrow calls up remaining editing command modules.

ENTER places current string into main body of text at position indicated

by >.

CLEAR Kkey erases letter immediately under cursor.

With flashing > at top of screen:

T, |.Qand A move cursor up and down through main body of text.
deletes line immediately below cursor.

C copies line below cursor to lower partof screen (original is
not deleted).

F formats text.

P prints text if printer is connected.

S calls up data-file module.

ENTER returns control to lower screen cursor.

6.4 MUSIC

All work and no play etc., so this program does just that — plays. Like the
DRAW function that we have used in several places, Dragon Data have
built a flexiblestringdriven musiccommand called PLAY . Inthis program
we take advantage of the Dragon’s ability to play about with strings, to
literally edit music.

Before entering this program it would be a good idea to go back to the
Dragon manual to check up on the basics of the PLAY. You will find the
details in Chapter 9 of the manual.

MODULE 6.4.1
caca RE
S€21@ REM DATA FILES
cozea R
©32_MOTOR OH-AUDIO OH:-CLS:INEUT “POSTIO
N TAPE THEN PRESS enter MOTO®R IS OND>.

S€a4a MOTOR OFF ' INPUT “PLACE RECDRDEP -
CORRECT MODE. THEN PRESS enter ')

casa PRINT: -PRINT "1 >SAVE"., . "2 > PEan.L" S 4
NPUT "WHICH DD ¥YDU REQUIRE'",Q

caca DN G GDTD €080.616a

€a7a GOTD casa

sasa MOTOR ON:FDOR TI=1 To ,19000 NEXNT I
case opP nor.e-1, tmUs

S10e PR rN'r £—1.

FOR I=& TO

PRINT €-1. TIJNE.(>

=)

o

o

=3

= 3

@ DPEN_"I".£—1, "MUSIC"
a ~N

[=3 =3

2 INPUT £—1.TUNE®SCTI >
o
=

A standard data file module.

134

Chapter§ Handy programs

MODULE 6.4.2
7ooa rRE
7212 REM neLe
7aza

7aza PLs PRINT “THE FOLLOWING FUNCTIONS

NOTES DISPLAYED CAN BE MOVED 19 FORWAR
OS OR BACKWARDS BY USE OF THE a AND A KE
s
TS PRINT -PRINT “LHEN THE CURSOR IS OPP

(=3

) vS 1.o.w B
7”69 PRINT : INPUT "PRESS evwter FOR MORE - "

?e?e CLS PRINT “A_Fause CAN BE INSERTED
RESSING £ WHEN OPPOSITE THE
PELEVRNT ENTRY. HAVING ENTERED APAUSE IT
,SANNOT BE CHANGED SACK BUT MUST BE DELE
TED. ©
7OBa PRINT PRINT "PRESSING o WILL RESULT
HE DELETION OF THE NOTE NEXT To T

PRINT PRINT "PRESSING 1 WILL ALLOW
A NEM NOTETO BE _INSERTED IMMEDIATEL

7199 PRINT INPUT "“PRESS ENTER FOR MORE: "

?11@ CLS 'PRINT "“TO CHANGE THE DURATION 0O
F A NOTETO A DOTTED VALLE. PRESS THE
FULL STOP. TO CHANGE BACK TO ANORMAL
ALLE PRESS THE SEMI— COLON _KEY. "

712n PRINT PRINT "“TO DETERMINE THE TEMPO

RESS + AND ENTER THE DESIRED VALLUE WH
ENPPDMPTE
BN PPINT PRINT "TO PLAY THE TUNE PPESS
m_ THEN PECIFY THE START AND FINIS
POTRTS. °

7142 PRINT: INPUT "“"PRESS enter FOR MORE: "

=]

7192 CLS:PRINT:PRINT "“"IF THE TUNE HAS NO

T BEEN FINISHED. IT CAN BE SAVED

IN ITSDEVELOPING FORM BY PRESSING =.

THIS SAME KEY WILL ALSO ALLOWTHE RECALL

nF A Pﬁvaous TUNE WHICH HAS BEEN STO

RED B% TH METHOD. "

Z1eD ERIMT PRINT “A & INISHED TUNE cAN BE
TAPE BY PRESSING <.

71?9 PRINT INPUT "“PRESS enter FOR MORE

7189 CLS:PRINT "“"REMEMBER THAT YOuU DO NOT
HAVE TOENTER A VALUE FOR EVERY ITEM

THAT MAKES UP THE NOTE. IF YOou DO NOT S

PECIFY A VALUE. THE ONE GOVERNING THE PR

E‘!IDUS NOTE WILLBE INSERTED. PRESSING en

RESULTS IN ANY CHANGES BEING REC

BROED.

7159 PPXNT XPPINT C“ONCE THE CURSOR IS MOV
D E NDYE . IT CAN ONLY EE MOVED

<= Rcarn THE USE OF enter.

72om PRINT . INBUT (PRESS enter TO RETURN

TO MAIN PROGRAM:' " QW

7212 RETURN

This is the only program in this book to contain such a module as this,
known asa Help function. Its aim is to present the rules of the program on
command. Itis included here partly because this number has more one-key
commands than any other in the book, and partly because I felt you should
have an example of such a module anyway. Some people have no trouble
with one-key commands, after a couple of tries of the program with the
instructionsin front of them they never look back. Others do not find them
so easy — in which case all they have to do is to press H during the main
program section and they can page through these instructions. Such a

135

T he Working Dragon

module could easily be added to many of the programs in this book where
memory space is not the prime consideration.

MODULE 6.4.3
1000 RE
1210 REM INITIAL ISE
1020

REM
1930 CLERAR TS00O
1040 DIM TUNESC SO0 >
1900 LET N=
1960 LET TUNESC 1 >="LO00; 00 veo. oo
1072 DIM LASTHC4>:LET LAST=C 1 o244 " LE
TLLASTR 2= 2" \LET LAST=<2 >-'-15 FLET LAS
Te< 4 >=
1560 BIim TEMP=c 25> DIM STORESC 20>

Initialises the program. The arrays will be discussed later.

MODULE 6.4.4

RE
REM PRINT NOTES FOR EDITING

2 M 580 500 20 2 S S 6 S 20 3 o 4 2 2 A

IF NN>N THEN LET NN=N

IF NN<1 THEN LET NKN=1

LET P=O:LET P2=0

LET N2=13:1IF NZ2+NN>N THEN LET N2=N-—

=@ To N2 PRINT USING “EEEE
;N TUNES<NN+T > NEXT I
1saa S Sal AR A =g) THEN LET T=pP
EEKC< 1024+P > POKE 1024+P . 175 :POKE 1024+P.
T GOTD 1590

TE=CHR=®< 13> THEN GOSUB 2000 'LET
:GOTO 1550

Te=CHR=®< 5S4 > AND P2>® THEN LET P=

T®=CHR=®< 12> AND P2<N2 THEN LET P

TE=CHR=®<S > AND P-32%P2<18 THEN L

E
1630 IF Te—CHR®<E> AND P—32%xP2<>S THEN L

=4
1640 IF Ts="A" AND P-32%P2=0 THEN LET NN
=NN+ 10 GOTD 1530

2" AND P—32%P2=0 THEN LET NN

[THEN FDOR I=N TO NN+PZ STE
ET TUNESC I+1>=TUNESC<I > NEXT I LET T
90000 VOO0 00" ' LET N=N+1 G

osus 2000 :GOTO 1550
1670 IF T=="D THEN FOR I=NN+P2 TO N:LET
TUNESC I >=TUNE®SC I+1>:NEXT I LET N=N-—1'G0O

1520 _IF _PEEKC1Q24+P>>111 AND PEEK < 1024+
P><122 AND THEN MID®CT
UNE=® < NN+P2 >, P— ’22*P2-4 >-'rs PRINT ® P2%32+
S TUNESCNN+P2>. IF P-32%P2<18 THEN LET P=

LET P=32%P2+S
LET P=232%P2+11
LET P=3Z%xPZ2+14
LET P=32%P2+17

T= MID®C TUNESCNN+P2>. 1 >
LET TUNE® NNTP2 sml EFTHC TINE %< N+ B2 5
SO PRINT ® 2I2%P2+S5. TLINESCNN+P2> LET P=23

THEN GOSUR 2500 :GO0TO 1570

GoTOo 7O EL PRIN
TEMPO: i TEMPO " I
= =] 17

“TrASTRS

Rl < TEMPO >
MID®C TUNES< NN+P2 >, S5
THEN MIDS< TUNESCNN-P2>, 5>

THEN GOSUBR 3000'G0T0 13560
THEN GOSUR S000:'cG0To 13550
THEN COSUR 7000'GOT0 1550
1920 LET P2=INTCP-32>

1830 GOTD 1580

136

Chapter 6 Handy programs

Believe it or not, there is hardly anything to this module. All it really
consists of is a cursor move module with a series of simple operations
revolving around moving the cursor or editing the contents of the screen.

Commentary
Line 1530: N is the number of notes so far entered. NN is the position of the
cursor in the list of notes.

Line 1550: P represents the position of the cursor on the line. P2 represents
the position of the pointer down the page.

Line 1560—1570: N2istheend of the display — if N2is 50then the 14 notes
up to note 50 will be displayed.

Line 1580: The same type of flashing cursor as found in Texted.

Line 1590: Pressing ENTER results in a note being registered — you
cannot yet do this.

Lines 1600—1610: Up and down arrows move cursor.
Lines 1620-1630: Left and right arrows move cursor.

Lines 1640—1650: As in Texted, the A and Q keys are used to specify a
move of 10 places for the cursor.

Line 1660: Pressing I results in a new note being inserted immediately
before the note the cursor is currently opposite.

Line 1670: Pressing D deletes the note the cursor is currently opposite.

Line 1680: If the input is in the range0-9, itreplacesthecharacter under the
flashingcursor.

Lines 1690—1720: The format of the notes when they are displayed is
shown in line 1060. The first four characters will store the length, the next
two the octave, the next three the volume and the final two the note — the
notation is the one using figures rather than letters to represent notes.
Input of L,0,V or N moves the cursor immediately to the first figure (not
letter) of thecorresponding note. This saves agreat deal of button pushing.

Line 1730: Inputting P results in the note being transformed into a pause.
The length of the pause can be edited but it cannot be edited back to a note.

Line 1740: Inputting M calls up the module which plays the tune as
developed so far.

137

1he Working Dragon

Lines 1750—1760: Inputting T allows the user to specify the tempo.

Line 1770: Pressing . results in the note length becoming a dotted value.

Line 1780: Inputting ; removes a dotted value, if present.

Line 1790: Inputting C (for compile) leads to the tune being processed into
the form of string under which it will eventually be saved and the user given
the option of saving it.

Line 1800: Inputting S allows the current tune to be saved in its multi-line
form or a tune saved in this form to be picked up and worked upon. Tunes
saved in the C format cannot be re-edited by this program.

Line 1820: Inputting H calls up the help function.

Testing Module 6.4.4
Sorry, but you can’t yet.

MODULE 6.4.5

REM
2918 REM INSERT DEFAULT VALUES
2929 e

ik

EF T TUNE®RC P2+KNKN >, 1 D= "P*" THEN L
7% TUNE’f o IAN S2UERT RS TUNE-< PZ2+NN >, 55 G0

a
4 PESTDRE FFOR I=1 TO 4
L
zese IF VF!L’ MID®WC TUNE®SS P2+NN>. PL . LL > >=2
THEN MID®MC TUNESCPZ+NN>,PL >=LAST®C I > ELSE
LET LH‘BT‘(I >=MID®C TUNE®SS P2+NN>. PL.LL >

2078 NET
zeae I1IF Pa-o-NN-N THEN LET HN=HN+1:LET TUNEw
CND>="LO01: 0B . Vs : 88" ' LET P2=P2+1
2098 RETURHN
2198 DATA 2.4.7.1.10.2.13.2

If the thought of entering all the data necessary to fill the format shown in
line 1060 has you daunted, then don’t worry because for most tunes this
module will do the work for you. What it does is to allow you to specify
only those values that are different from the previous notentered. Any that
are not specified are given a default value equal to their value in the
previous note. Default values are set initially by line 1070. Values are
inserted by reading the positions of the various sections of each note from
the DATA statement.

138

Chapter 6 Handy programs

Testing Module 6.4.5

You should now be able to perform all of the functions described so far
except for those of playing the tune and compiling it for permanent

storage.

MODULE 6.4.6

2500 PEN************************
PLAY TUNE

B

FTMT SH
EN
1TlJNE‘< 1>

2598 RETIRA

INPUT “START POIH

PRINT USING “£££€£", 1

A straightforward modulewhich plays lines of thearray TUNES$ between
points specified by the user. Displaying notes as they are played makes the

music sound slightly stacatto.

Testing Module 6.4.6

You should now beable to play partof any tuneyouhave entered.

MODULE 6.4.7

20210 REM STORE TUNE

A
3930 LET TEMP®SC O >=LEFT®C TUNE®C 1 >, 5 >

2040 LET TEMP®C 1 >=MID® TUNE 1>.6.3>
2252 LET TEMP®SC2>=MIDSC TUNE®SC 1 >.5.45>

30 _CLS. INEUT ~NAME FOR THIS T INE * ') Qs+

L 3
IoBO® FOR I=1 TO 20 LET STORE®C I >=-

FNEX

aasa LET STORE®SK ROWS >=TILINE®SC S >+ 1 "+ TLNE®S

ci3en i
$ide for 1-2

31'19 IF MIDBC TUNE®SC T >, 9, 4 ><>TEMP®C 2>

TO N-—
2110 IF LEFTSC TIINESC I >, S5 >TEMP® @ > THEN

3 TORE®< ROWS >+ MID ®< TUN
E=<T >, 6.35 LET TEMP®C1>=MID® TUNESC T >, 6.

N LET STORESK ROLJS >D=STORE®SK ROWS >+MID ®< TN
ES<I>, 5. 25 LET TEMP&C2>=MID® TUNESCI >. 3.

4149 LET STORE®CROWS >=STORE®SC ROWS >+MID &<

TUNE®SC I>. 1323+,

P1TO IF LENC STORE®SC ROWS >>>200 THEN LET R

I
2170 FOR I=31 TO ROWS ' 'PLAY STORE®SCI >:NEXT

I
218 T
>.--,»c| IF Sz 3w THEN RETURN

IAPE THEN FPRESS enter <MOTOR

‘DO YOU WANT TOo SAVE < Y-N

196 CLS MOTOR ON:ALUGIO BM: INPUT"POSITIO
[l IS OND> '

zee MOTOR OFF ' AUDIO DFF-INF‘IJT "PLACE RE
=

FOPDER IN record MOD EN PRESS enter

139

The Working Dragon

2210 MOTOR OHN FOR I=1 TO 10000 :NEXT I
2220 OPEN_"0O".£—1. "PLAY"

2220 PRINT £-1 A=OISI

32340 FOR I=0 TO RO

2250 PRINT £-1., STORE.(I>

This module compiles the tunes into an economical format for storage on
tape.

Commentary

Lines 3030-3050: The three lines of TEMP$ are used to store the last
values of length, octave and volume (in this case those of the first note).

Line 3090: The name of the tune and the first note are stored in STORES.

Lines 3100—3160: The contents of TUNE$ are added to STORES. Note
values are always added, but other details of a note are only added if they
differ from the last value specified, since PLAY works on a default basis —
the last value for length, volume and octave governing all following notes
until another value is specified.

Lines 3170—3280: Theresultant string is PLAYed and the user is given the
option of saving it if it is satisfactory.

Testing Module 6.4.7

Themodule should, after a pause, play the desired tune and give the option
of saving it.

MODULE 6.4.8

2000 RE
2910 REM PICK 1JP TUNE

EO2O R E M4 5 5 2 0 A A M A M A A A
B030 CLEAR 2000 :0ORPEN“TI'" . £—1. “PLAY"

=]
Sese I1F _EOF:—1> THEHN cOTO soese
2078 INPUT £—-1.STORE®CI

6122 FOR 141-rn|='l:u~|s PLAY STORE®C I >: NEXT I

This module serves no purpose whatsoever in this program but is placed
here to give you an example of the kind of module that would be needed to
pick a tune from tape and play it. If you have compiled and saved a tune,
youcantest thismoduleand thelast by stoppingthe program, re-RUNning
it toinitialisethe variables, stoppingitagainand thenentering GOTO 8000
(don’t forget to position the tape). The original tune should be played
again when loading has finished.

140

Chapter 6 Handy programs

Summary

This program well illustrates the world of difference between a
screen-editing approach to data and one relying on response to prompts.
Imagine the length of this program if each possibility had to be spelt out in
amenu at various stages.

Going Further

1) This program will only really come into its own when, like Artigt.it is
integrated into your program library as the supplier of material for other
programs to work on. Most programs could benefit from theaddition of a
bit of sound now and then and the memory cost should not be high.

MUSIC: S y of single-key ¢ d

Upand Downarrows, A and Q move cursor up and down.

I places new line before lineindicated by cursor.

D deletes line indicated by cursor.

0-9 changesvalue of any number cursor is placed over.

L,0,Vor N move cursor immediately torelevant section of note.

P changes note to pause — it cannot be edited back, only
deleted.

M plays all or part of tune.

T allows setting of tempo.

.and; change to dotted note value and back.

(& compiles tune and gives option of saving.

S saves tune in form such that it can be reloaded by this
program.

H calls up help function.

ENTER registers note on the sameline as cursor. N.B. when cursor

has been moved over a note it can only be removed by
pressing ENTER.

6.5 GRAPH

Earlier on, inthechapter on high resolution text, you were promised an
example of a program using such text in an efficient manner. This is it.

Apart from that not inconsiderable feature the program is a graph
drawing tool, enabling the user to draw line graphs of a variety of data,
specifying the units and the set-up of the axes.

MODULE 6.5.1

™M
£©19 REM DATA FILES
m

€230 _MoToR ON:AUDID ON:INPUT “POSITION T
APE THEN PRESS enter <MOTOR IS ON>: .0
DTOR

£B30 ERTHT - TMPUT “PLACE RECORDER IN CORR
ECT MODE THEN PRESS enter::;

141

The Working Dragon

sasa PRINT PRINT “FUNI‘TIDNS ﬁvﬁILﬁaLE D5

1 SSAVE DA Tam22eenn > D _CH

FIPF!I‘TEP gert ThRIER B voo Reantee
CoTh Care. foea.e2re

sesa 1ee

SA7a MOTOR OH FOR I=1 TO 1066 :HNEXT I

sas9 QL £—1 ., "GRAPHS"

PRINT £-1 . HOR . VER.LH.LW.HM. VM. HO®. .V
EG,BHSE,LXMXT e

s10a 1= TO HOR—1

si11e (=138 304

s12a

13 OPEN "O".£—-1."CHARSET"
&1aa A

s15e 0O Cc1—1

e15a LCHARSC T S

s17a

s1=a

e15a

€202 PCLEARS:CLEAR 1000a:FPCLS PMODES. 1
s21a 1 —1. "GRAPHS

sz2z2a HOR . VER LH.LV.HM. VM. HO® .V
E® BASE.LIMIT.VV DIM GCHOR—1>:DIM CHARSC
Zo

sz2za OF I=@ TO HOR-—1

c2ae TRPuT 2-17eTs

s2=a

s2ca

e27a £—1. "CHARSET "

e2aa N

s2sa cI—

szea S CHARSC I >

£z1a

ezza

SR3A GOTO 10aae

A standard data file module withtheslight addition thatitisalso capable
of loading a character set created by the Dictionary program. Having
loaded that character set it is then saved and loaded with any data that is
stored on tape subsequently.

MODULE 6.5.2
zeaa RET
F@1e REM FORMAT TITLES
7@2a REr
@38 LET P2=13-INT<LENCE@> 2>
Teie PRINT F2HP1+FP2. STRING®C LEN: F®% >+2.
CHR=C 185 > >

=
TS PRINT ® 22%C P1+1>+P2.CHRSC 185 >+Fa+T

TOSa PRINT @ 22%CP1+2>+P2.STRINGSC LENCF®
>+2.CHR®Z 189=>
Tarve RETURH

A standard title formatting module.

MODULE6.5.3

1@ea RER
1@1e REM MENU

182 CLS LET FEs="GRAPH" 'LET Pil=1'GOoSuU8 7

1@4a PRINT
185 PRINT
1eca PRINT
1e7a PRINT

"COMMANDS AVAILABLE

1838 PRINT a>DATA FILES™

1@5a PRINT " S SSTOP

1;@3 ;F?.INT FINPUT Y“WHICH DO YO REQUIRE :
1110 OH_Z GOSUE 2000. 3000 . SO00 . S0aa. 114a
1138 GOTO 1ae

;é;e TLS LET Fe="GRAPH" ' LET Pl=1'GOSIB 7

Lhaprero Hanuoy proyrains

® LET Fe="PROGRAM TERMIMNATED" LET Pl=
OSUR Taee

mipw

1=
=
co

A standard menu module.

MODULE 6.5.4
zooo
2010 PEM SET UP AxES
E=E]
2850 FoLeam Armmone A 1 PCLS. CLEAR 1oo00
CLET
2690 SUS . IRPLT | tHon ma XNTEPVHLS AN T
e HORIZONTAL AXIS: " Hi ET LH=INT
<23 HOR >
2Ose INPUT “HOW MANY INTERVALS ON
vERTT Al A TN LER TEEY LS TR I e v
ER >

zose PPINT INPUT_ "“"PRESS enter TO VIEW AX
erte~ TO RETURN: ' Gi=

THEN GOTO
ARKERS AT rECLLAR INTER

INPUT SAP FOR HORIZON

INPIIT GAP FOR VERTICA

TTINEIT VPRESS enter To VIEW Ax
anter TO RETLRN (=L]

THEN cOTO 2140
IS THAT SATISFACTORY <Y
THEN GOTO 2ooe

FOR LUNITS ON HORIZONTAL

2 “NAME FOR 1IJNITS ON VERT
p 4= P VE!

=21 CMINTMUM YALUE ON THE Vv
ER cBAS

21 MANIMIM VYALLE REPRESEN
TED "UNITS VERTICALLY @ s
LI

2200 LET wWw=<CcLIMIT-BASE >~VER

2210 DIM GCHOR—-1>:FOR I=8 TO HOR-—-1:LET G
€I Y=—9999 .9 NE=T I:5E0TO 1000

The function of thismodule is to allow the user to specify thekind of axes
desired and the units to be represented.

Commentary

Line 2030: The two variables VM and HM will ultimately store the pixel
interval between highlighting marks to be placed on the axes. They are set
t0 999 so that the marks are not printed initially.

Lines 2040— 2050: LV and LH are the pixel lengths of the units on the axes.

Line 2200: VV will be used to plot the vertical position on the axis of any
data later entered.

Line 2210: The array G is filled with —9999.9 simply because it is a value
unlikely to be in much demand in the entry of data — unlike zero.

143

+he Working Uragon

MODULE 6.5.5
4000 RE
421© REM DRAW AXES
4020 RE
4030 PCLS:SCREEN 1.1
4050 FOR I=LH TO 236 STEP LH 'ORAL_"BM"+S
TREC 13+1I 5+ . 176102 L "+STRECLH >+",01,R"+S
TR®C LH

40EO IF < I-LH>HM=INTC< I LH> HM> THEN OR

ExT T
4080 FOR_I=LY TN 172 STEP LV :DRAW “8M1%.
n+STREC 177—~I S+ ML LZiDY+STR® LV+234+"1L.1 U+

4090 IF < x ALV DAV M=INTCC T-LY >-VMD> THEN OR

4100 NEXT I
4110 RETURN

Thissimplemoduledraws the axes with divisions and highlighting marks
specified.

Testing Module 6.5.5

You should now be able to specify the form of the axes and see them
displayed.

MODULE 65.6
3000 RE
32010 REM INPUT DATA
3020 RE
3030 CLS:PRINT "POSITION IN " HO®, « INPUT
H1:IF H1>HOR THEN PRINT:PRINT "VALUE OU
TSIDE RANGE SPECIFIED FOR _HORIZONTAL A
HIS. " FOR I=1 TO B0O00:NEXT: GOTO 3000
3948 PRINT PRINT “QUANTITY IN_“iVEm: . INE

T MLILIFE VASLIMIT THEN PRINT.PRINT “vALU
(=13 VEPTICRL

CDPPE!‘T

IOEO IF GrH1—1><>—9999.9 THEN PRINT:PRIN

T “THAT POSITION IS ALREADY FILLED BY TH

E VALUE" ;GCH1-1 >

RAO7O IF GCH1—1><>—9999.9 THEN PRINT:PRIN

T "DO _YOU WISH TO REPLACE"GCH1—1>; : INPU

T @%: IF Qe="N'" THEN GOTO 3000

GOH1—1 >=mW1

Atz @ > 32."";- UT “"ANOTHER
X QW IF Q= HEN GUTU 3000

166 RETIRM

This module accepts data under the headings supplied by the user relating
to the vertical and horizontal axes. If the data input would overwrite an
existing item of data, the user is informed and has the option to cancel the
input.

MODULE 6.5.7
So0e REM
S©10 REM DRALI GRAPH
=020 R
S©30 IF CHARSC @ >="" THEN CLS:PRINT @ 7%3
Rp o CHARACTER SET NOT LOADED. “TFOR J=1 TO
900 : HEXT - RE TURN

5949 GOSUR 4000
TOSO FOR Lw® TO HOR—1:'IF G(L >=-9999.9 TH
BN NEXT L :CLS PRINT 0 732 . " k5 KKK KRR

144

Chapter b Hanay prograrms

ANO DATANEEINEA S IR XN - FOR I=1 TO SO0 NE
T RETUEN
LET To=HO= LET P1=20:LET P2=122:'G0OS

S CIUNIT U +STR®C INTC WY >
22 LET P2=1:' GOS8 Q000

SOe0 CRALI "BM'+STR®C 13+CL +1 >KLH >+ . "+STR
TC 1 PT—CGOL D~BASE Do VRLY >

TOeSa FOR _J=L TO_ HOR-1

S12@ IF G4 J>2>-9955.5 THEN DRAW M +STRe

CINTC1I4C Jel SHLH D>+ "+ STR®C TNTC 177 ¢ G
2-EASE S ovialy >

=110 NE><

=120 IF IN’/EYQS-' " THEN COTO =120

S12a RETURN

Based on the data contained in the array G and the scaling calculated in
Module4, thismodule draws asimpleline graphonto the axesspecified by
the user.

Testing Module 6.5.7

Lines 5030, 5060 and 5070 should be edited so that REM is inserted at the
beginning of each. After this you should be able to input specifications and
data and then see a graph drawn onto the axes.

MODULE 6.5.8

oo RE
8910 REM HIGH RESOLUTION TEXT

b
9
]
]
1

SR®="ABCDEFGHI. JKLMNOPRRSTUVIWNYZ

o4 FOR I=1 TO LEN <T®m>

AOSO FOR J=1 TO LENCGR®S>

EEEG] IF MIO®CTH. I.1>=MID®WCGR®. 1. 13THEN G
oTo eo

eo7e NEXT]

eoae CLS:PRINT “GRAPHICS SYMBOL NOT CATE

REDC FOR " . MID®CT®.I.1> FOR J=1 TO S000:'HN
EXT STOP

SO90 DRAW "“"EM"+STRSCP1+6%C IT~1 >>+", “+STR™
<P2 >—‘-CHRP.-< J1—1 >

8100 NE

2110 PET'_IPN

Apart from the extra data file requirement, this module is all that is
necessary for practical handling of text in highresolutiongraphics modes.
The printing of the text is not as fast as normal printing but it is acceptable
for labelling and other limited text purposes. The quality of the lettering
will depend on the quality of what you have created with the high
resolution text programs.

Commentary

Line 8030: Thisstringisalist of text charactersinthe same order asthey are
to be found in the character set contained in the array CHARS.

Line 8040: T$ is the name of a string which is declared when the module is
called up and which is to be printed.

145

1 he Working Dragon

Lines 8050—8070: This loop compares letters in T$ with those in GR$ and,
when they are discovered in GRS, executes the DRAWing of the
corresponding character from CHARS. It does notactuallymatterthat the
characters in GRS are the same as the charactersin CHARS, as long as the
user knows what the GRS characters are meant to indicate e.g. if the first
character in CHARS were a * then specifying A in T$ would result in the
printing of an asterisk.

Line 8090: PI and P2 are the X and Y co-ordinates to start drawing.

Testing Module 6.5.8

All that should be necessary to unveil high resolution text on your Dragon
is to remove the temporary REMs from the beginning of lines 5030, 5060
and 5070. Note that you must first enter your data and then call up the
character set fromtape. Inaprogram with aseparate initialisation module,
this would not be necessary, it is just that in this programthe variablesare
allreset when a new framework is specified for a graph.

Summary

One day there will no doubt be a version of the Dragon which will not need
to go to these ridiculous lengths to provide such a desirable facility as high
resolution text. Even when it comes, however, it will lack something else
that you would have liked to see. Perhaps with applications like this one
behind you, you will be emboldened to believe that if Dragon haven’t
provided it there’s no reason why you shouldn’t do it yourself!

146

CHAPTER 7

Fun and Games

You will, perhaps, already have gathered from the overall form of this
book that I do not consider games the be-all and end-all of home
computing. My suspicion is that games are often the fall-back of those who
havediscovered thefascinationof computing but not yetexploredthe ways
in which the power of the micro can enhance their daily living.

Nevertheless, games have their place, depending on the games
themselves. Too many magazines and books contain examples of
extremely boring games which no one would ever think of playing for
pleasure were it not for the fact that they have now been put onto a
computer. Personally, I like computer games that are irritatingly difficult
and that never let you leave the machine with the feeling that you have
absolutely conquered them. Here are three of my favourites.

7.1 TRACKER

This game is infuriating. It will have you questioning the correct
functioning of either the program or of your Dragon in next to no time. So
sure am I of this that I have even included a line in the game which gives
away theanswer, so that you can play a couple of times and prove that the
whole thing is working properly!

MODULE 7.1.1
coee RE A A BT
8218 REM INSTRUCT IONS
eoz20 REMX A AR A

2020 CLS:PRINT @ 10."instruction="
8040 PRINT.PRINT “THIS IS A HUNTING GAME

&052 PRINT: PRINT HE _HUNTING GROUND IS
PR

I By . *38 GRID INT:PRINT “THE QUA
4 IS INVISISLE.
aose PRINT: PRI "EACH TURMN, THE GQUARRY ™M

AKES A SECRET MOWE. THIS MOVE DOES NO
T CHANGE DURING A PARTICULAR HUNT . *

S0S@ PRINT:PRINT “1> AN INVITATION TO IN

ARRY
8102 PRINT.PRINT S2> AN 07 WILL APPEAR
3 URARE
AD _IACENT SRUARE WILL xNDxcRTE THE DI
RECTION DOF THE QUARRY.
BT I PRINT PRINT TS5 TE ausrry WILL Mowv

2120 PRINT:INPUT ‘“enter FOR _MORE:*) R@
8132 CLS:PRINT "AT THE START OF EACH TUR

147

T he Working Dragon

N You HAVE THE OPPORTUNITY TO REVIEW

THE HUNT SO

2140 PRINT: PRTMT “THIS IS DONE BY ENTERT
s

MG ZEROD WHEN THE DOWN CO-DORDINATE
CALLED FOR. "
8199 FRINT:.PRINT -vOU CAN_START THE REVI

El AT ANY PREVIODUS MOVE B8uUT YoOu
LINITED TO REVIERTNG 28 MOVES INﬁNY oN
bt 0

2169 PPINT PRINT "THE 20 REVIEWS CAN BE

TﬂrEN ALL AT oNcE OR IN BATCHES. "+ INPUT
e 2

aire RETURM

Instructions for the game.

MODULE 7.1.2

Sooe RE!

221® REM SET DIFFICULTY

2020 REM

Se38 PRINT “THERE IS A DIFFICULTY FACTOR
M

LES .
2070 PRI
REDC DIFFICLILTY FACTOR:

T:IMPUT “PLEASE THPUT YOUR DESI

Soza ILET

11—E "+ T+r2—100%c E=O > RETURN

This module sets a difficulty factor as explained in the module itself.

MODULE?7.1.3
1908 REMIKKR 2 A
1©1®@ REM INITIALISE
1920 RE!
1938 CLS:PRINT ® SX32+12. "tracker:'
1940 PRINT ' INPUT "DO ¥Y0OU WANT INSTRUCTIOQ
NS ¥ N>:"; Q% IF Qe="Y¥" THEN GOSUB 2000
195S® CLS GOSUR Soee
1@5® DImM EEN-F
1970 LET R1=7—RND< 13>
1928 LET R2=7-RND< 13>
1998 LET P1=RND< 12>
1108 LET P2=RND< 30 >
1110 U LET Te=CHR®C 152 >+CHR®C 151
2 FO S LET DBe=BS+T®: NEXT
i1 T R&< 1 >S+CHR®C 159
S T HEXT
11

This module sets up the program variables.

Commentary

Lines 1070—1080: Rl and R2 are the vertical and horizontal components
of the quarry’s secret move each turn.

Lines 1090— 1100: The vertical and horizontal co-ordinates of the quarry’s
initial position.

148

Chapter 7 Funand Games

Lines 1110—1120: This sets up two lines of red and yellow chequerboard to
speed later printing.

MODULE 7.1.4
zZooo
2o10 PEM INITIAL BOARD
2oze

zose cLs

2040 LET Am='1 < ras01 4SS 7aS01 a4Ss7
290" :PRINT " “,;Ams

2059 FOR_I=1 TO 12:PRINT ® I%X32.MID®cA®.
I.13 NEXT:GOSUB 4000 IF A=1 THEN RETURN

This module simply prints a grid of numbers on the edge of the
chequerboard (which has not yet been printed).
MODULE 7.1.5

4000 RE
4910 REM PRINT BOARD AND MOVE
RE

4038 FOR I=1 TN 6:PRINT ® <I®Z—1>%x32+1.8
€ PRINT @ IX2%32+1.,C®: NEXT
4024® FOR I=13 TO 1= PRINT ® IX32.STRINGS

<31 -

490 IF T=0 THEN RETURN

4050 POKE 1024+32%M1+M2.ASCC " O" > POK 10

24+22¥CM1—~CP1>M1 >+<P1< Ml”*(m2‘<P2>M2>+<
< .

4070 FRINT ®R1S%32.P1:
4020 IF _A<>1 THEN RE
4958 RETURN

naP2y

This module prints the board itself.

Commentary

Line 4060: This line pokes the Ointo the position guessed by the player and,
using the value of conditions, a + in the direction of the quarry. Note the
way the ASC value of a character is poked directly to the screen though
since the chip which controls the display works on a slightly different
character set than the Dragon’s Basic the + is inverted.

Line 4070: Thislineactually tells the player where the quarry was whenthe
0+ clue was formulated. It should be removed when you begin to play
seriously.

MODULE 7.1.6

TODO R E MK o A A A A A A A A A A A A A A A
=910 REM MOVE INCREMENT

> E | < >
=S@=2@ LET _P1=P1+R1:LET P2=P2+R2
S040 IF TAE=INTCKT-E> THEN LET PlmP14+RND<
EXLET P2=P2+RNDC6>:PRINT ® 13%32. "rando
m mover
BOTEO LET P1=P1—12%<(P1<1>+12%<P1>12>
SOSa LET P2=PZ2-30%CP2<1 X+30x%< P2>30 >
mere RETURN

149

The Working Dragon

This module adds the secret move and calculates whether the quarry has
moved off one side of the board or the other. Depending on the difficulty
factor, the module also assesses whether it is time for a random move.

MODULE7.1.7

2000 RE
2018 REM INPUT AND DIRECTIONS
o L e T s
TmT+1:IF T>1008 THEN CLS:PRINT ®
TX3I2. "SORRY—CAN’T TAKE_ANY MORE MOVES. "
= JUST SO BAD IT’S PAINFUL! " END

VE'+STR®CT > . FOR I=1 TO LE
e RISl M oac e 1. 1o

3669 PRINT @ 1S%32+1%5." < 0 FOR REVIEW>"

2FO7A PRINT @ 13%32."";: - INPUT "DOWN: " 1M1
ROA2@A IF M1>12 OR M1<@ THEN PRINT">0UT OF
RANGE" :PRINT ® 13@%x32."" 'o0OTO =20Sa

2090 IF M1=0 THEN COSUB 7000 o0To ﬁa.a

2100 PRINT ® 1=x32. RING®< 1

2110 PRINT ® 14a4%32. T RmOT A rASs am
2

21 T_">0UT O
F 3110

21

=1 (=R l-R=1-T-T-]
21

=1 LET MCT~1.25=P1:LET M<T—1.3>=P2

21 GCOSUB 4000 : GOSUB SO0 G0TD 3030

This module accepts the player’s guess as to the current position of the
quarry and stores it, together with the quarry’s co-ordinates, in the array
M. It obviously also checks to determine whether the player has actually
caught the quarry.

MODULE 7.1.8

sooo PEM***************x********
60210 REM SUCCESS AT

co2a RE
6038 PRINT @ 732, STRING®CI1. " > - PRINT
B e OR I=1 TO SO0 :NEX

coao PPINT ® T*3I2+6
- IF o

DT RNOgHERNC
¢ THEN ©OTO 10

Thismodule informs the player thatthegameiswon and allows a restart if
desired.

MODULE7.1.9

7ooo RE
7919 PEM REVIEW OF GAME
22a

?eae LET A=1:1F C1>20 THEN GOTO 7110
TOA0 CLS: PRINT @ 4%32+10. “revelu’
TSSO PRINT PRINT "“REVIEL ALLOWANCE 20 ™Mo

7O60 FRINT PRINT YOl HAVE USED" (C1
79?9 PRINT : PRINT “LA MOVE WAS HO. “:MID

2>
Tosa PRINT - INPUT "INPUT FIRST MOVE FOR R
T

cLs
7100 FOR J=T1—~1 TO T—2:LET Ci=C1+
7118 IF C1>28 THEN CLS:PRINT ® iox *3I24a

hapter /7 Funand Games

relen riakhts exhausted (FOR I=1 TO 22

F NE> =
7120 LET M1=M< 1L, @A>:LET M2=M< 1. 1> LET Pil=
MC 1. 25 LET P2=Mc J. 3>

714 PRINT ® 13%22."REVIEW OF MOVE": J+1
P1DA IF ¢ J+1 3 ,E=INTCC t+13-E> THEN PRINT
" cllowed™)

1a4%32. "7 INPUT “enter=NEXT

=t}
1S PRINT ® IX32,STRINGS

HEN NEXT
LA>ILET me-m('r 2.1>'LET
Mo T—2, 2 PoamMd T—2. 2>
EhShGe 2086 | LeT A=o . RETURN

This is the module which allows the player to review previous moves. It
uses previous modulesto draw theboard but setstheindicator variable A
to zero so that moves will not be input.

Going Further

1) One definite improvement would be a facility which, at the end of the
game — either successful or otherwise, allowed the player not only to
review the moves made but also to see the actual position of the quarry.
Since this information is stored in the array M, there should be little
difficulty in adding such a module.

7.2 HEADLONG

If you thought that one was bad enough, this one isabsolutelyimpossible
— at least on the higher levels of difficulty. The object of the game is to
steer a moving dot around a cluttered screen without crashing into
anything, including the trail left by the dot itself. As an added incentive
thereis alarge white block which rushes across the screen mindlessly and if
itcollideswithyouthenthatistheend ofthegame. Thebasisof thegameis
the Doodle program you were given earlier and two versions are given —
one for joysticks (which is the better of the two) and one using only the
arrowed keys.

MODULE 7.2.1

RE
REM TINITIALISE
RE

=

CUS: INPUT “PLERAS THE DIFFICLLTY
i o 1

K

939999999999999999M999D

PL2mm 191

A R L
N Y Y L L LE T)

»OUONAEAIN= DDV AL

151

/he Working Uragon

Sets up program variables and draws obstacles on the screen. The moving
block is taken, using GET, from theempty screeninline 1070 and stored in
the array G.

MODULE 7.2.2 (Joystick Version)

202 REM**¥
Za1o FPEM EXECUTE DRAWING
e e g e e S e e e e
= N=2: LET w=2
IT=0 TN 2:LET J< Id=J0YSTKS T >:NEX

M1= LET Yilmy
NmM—2KC I 2 O>ER-—DIFFXR >+2%< I 2 d<

Y=Y—2%< Ic AD>ER—DIFFXA >+2%< . 1C A D

Zosa IF P2>176 THEN LET P2=0

122 GET ¢rP1.P2>-CP1+1%.P2+15>. H.G ' PUT<P
P2 cPle1m. ot -
110 REMFOR I=1 TO =.NEX
IF 1< > DP Y1(s\r THEN IF PPOINTC >,

TF 1< >x 0OR vx« > THEM LET SCaSC+1
PUT cP1.P2><P1+1%.P2+1S>.H.PSET

RN LR =R

Most of the module will be familiar from the Doodle program.

Commentary

Line 2050: These variables are used to determine whether the user’s dot has
moved in this pass through themodule (keeping the joystick straight allows
thedot to be stationary). If the dot has not moved then no attempt is made
to see whether there is an obstacle where the dot is about to be printed.

Lines 2080—2110: These lines move the white block across the screen
diagonally.

Line 2130: If the screen point where the dot is about to be printed is set then
the game ends.

MODULE 7.2.3

2 M 5 50 5 S S S S 5 3 S S S S A A
REM GAME ENDS

PEwa*w**w*xw*x**w*xw*w**w*

CLS INT @ 7¥x32+10 CORE=".:SC PRI

n*'-«zoxa S CDIFFICULTY =

SRIFE el

Confirms theend of thegameand gives the score.

ALTERNATIVE MODULE 7.2.2 (Non-Joystick Version)

zaaa

2a1a PEM EXECUTE DRAWING

zaz2a

z2a3a LET H=m2 LET Y=2: LET DZ—SB—DIFF*S
2042 LET T®=INKEY®'K IF T®<>"" THEN LET D=
=Ts

Chapter 7 Funand Games

2060 LET X=X—-2%D®=CHR®C S >5+2%< DE=CHR®< B

>>
2070 LET Y=Y-2%<D®=CHR®SC 10 > >+2%< De=CHR®C
S4 5>

>
2075 FOR _I=1 TO D2 'NEXT

2938 cer iRl r2leriSTS . Pe s G PUTeR
SP2>-<P1+15.P2+15>.G.PSET

28 IF_PPOINTCX.Y¥ ><>8 THEN GOTO 2230
[\ LET SC=SC+

40 PUT CP1.P2>-<P1+15.P2+15>.H.PSET
S0 LET P1=P1+8'LET P2—P2+8
SO PSETCX.Y.3>
S GoTo 2o4o

Joystick functions are here replaced with INKEY$. The dot is never
stationary but continues moving until a new direction is input at one of the
arrowed keys.

Going Further

Enjoyable though it certainly is, the simple structure of this game gives
ample scope for all kinds of added features — not the least of which might
be a two player version.

7.3 QUOITS

A game of judgment and reactions and also a program that well displays
some of the strengths and weaknesses of the GET and PUT commands.

MODULE 7.3.1
sSeos
se1e PEM INSTRUCTIONS
seze
o0 LS PRINT —woLl ARE INwITED TO _0TIN
A o o THREE DIMENSIONAL QUOITS.
seaaiPrRINTILEE ST THREE DIME
HMSTIONAL BECALISE THE QUOITS HAVE TO BE

THROLJN FROM A HEIGHT ONTO PEDEST

ALS THAT VARY Itd HEIGHT FROM ONE TO FI
“E FEET. "

S23a PRINT.PRINT “vOU HAYE FOURTY lnLIDITS
ANG DBJECT IS TO GET ONTO

OFTHE |_nu PEDESTALS AS POSSIBLE.

S@E€e PRINT INPUT "“"d(enter> TO I‘DNT!NUE ey

SO70 CLS PRINT “THE HEIGH OF THE PEDEST
ALS IS INDI!‘RTED ey A N INBEP AS ON THE
(=

INT “EACH TIME YOU LAND
SlorE TS mTaus “FnETNE 1 20T
HAVEN"T HIT THAT O

S©56 PRINT:PRINT “"THE GAME IS ENTIPELY [
T. _YOUR_ONLY AIDS Two

I
S100 PRINT: INPUT ''Center> TO CONTINUE:

$110 CLS:PRINT “THE FIRST INSTRUMENT IS
A LINE LHTeN RACES ROLNG THE SOUGRE ON
LIHICH YO PLAY. PRESSING A KEY LWILL SToO

P IT AND IWHEREVER IT STOPS. THAT IS _ T
HE DIRECTION IN

AVvEL YOUR PLATFORM IN THE CENTRE OF
GRID.

91206 PRINT:PRINT “THE SECOND XNSTPIIMENT
S A POWERINDICATOR. IT IS ALSO A NE B
UTACROSS THE TOP OF THE SCREEN. E (0]
RTHER YO LET IT GO. THE HARDER YD!JP ™

S130 INPLIT "Center> TO CONTINUE: «
2138 AU T rrINT T TRETER voLR HAvE THROWN

153

The Working Dragon

THE NRUOITIT STARTS TO FALL.
Vt'rs FALL ON THE HEIGHT LINE AT

cAN_ TRAC

THE RIG

HT THE SCREEN-——TIT ALSOINGICATES THE H
EIGHTq OF THE FIVE TYPES 0OF PEDESTAL -
915@ PRINT:PRINT "“IF IT’S TOO LOW WHEN I

r GETS TA A PECESTAL. THE QUOIT IS WASTE

9ise PRINT : INPLIT “Cenmtmr> TO CONTINUE: *;

9179 CLS: PRINT “ONE FINAL ROBLEM. YOUR

PLATFORMIS CONSTANTLY DESCEND I NG .
TO TTH

IT INCREASINGLY DIFFICULT

MAK I NG
E

R PEDESTALS [={aTa]=Y LUCk‘"
5188 PRINT: TNPUT "denter> TO START: ", Q%

219 RETURMN
Instructions for the game.

MODULE 7.3.2

RE!
2091® REM INITIAL ISE

Ze3@ CLEAR ' PCLEARS
=3

>
2@eSe FOR I=@ TO 8:FOR =@ TO 10
2060 LET ACI. J>=RNDCS>

2082 LET X2=6'LET va2=5
2052 LET SCORE=©'LET AC4.S5>=0
Zi®a GoTo 1ase

This module sets up the program variables, especially the values in the

array A which determine the heights of the pedestals.

MODULE 7.3.3

seea RE
@18 REM CHIMNEY SQUARES
seza

1=
ODE<

624 DIM B1< 15,.15>v|>1n B2C15. 15>

15.1=>: DX B4c 1%, 15S>:DIM BSC 15,15

0= DIM BmCcA> LET Am="B8M1.1:R1S;

ey .

06 LET B®d 1 >=AR+"BR7IBD7 R D13

€07 LET B-r2>—ﬁ.¢'-sp ;BDRIR D1

BRA;R1:D1sL1"

Coco LET B®im>mAm+ BRI BD3IR1 D1

JBLAR1:D1:L1"

a5 DRAW BWMC 1> GET <1.1>-C16.16>

10 DRALI BRC2> ' GET <1.1>~<C16.16>

€110 DRAW BMCA> GET <1.1>-<16.,16>

€120 PCLS:DRAW BMC2>:GET <1 .1>—¢1

2.6

£120 DRAW BMC 2> GET <1.1>~C16.16>

6140 RETURN

Using DRAW instructionswhich provide a 1,2 and 3 this module DRAWs
the five dice faces and then GETs them into the 5 arrays BIl-BS.
Unfortunately a three-dimensional array such as B(4,15,15) cannot be

used since GET and PUT will not work with such an array.

MODULE 7.3.4
7o0® RE
7@1® REM PRINT CHIMNEYS
720 RE

7ORIS PMODES4 : PCLS « SCREEN 1.1

FOR Tem24 TO 152 STEP 15 :FOR . _te32 TO
eZ"'EF‘ 1S

IE_1=88 AND J=88 THEN GOTO 7ase

LET I1mcI—-24>-16'LET Jlmd I—325-16
DN ABSZACTI1.)1 5> GOSUB 7140, 7120, 71
7o. 7100

i= ﬁ<11"J1><e THEN PUTC J. I >~¢ a+17. 1

1
NE>T 1. 1

DRAW "BM2T0.191" FORI~1 TO &:DRAMW
LS BMeD . 100 NEMT T

DRAW “"BMS. 186" :FOR I=1 TO <H—100 >-5

DRAL. D2:R2Z.:UZ: L2BM+S . +0 % « NEXT T
DRAL: BMa FR1 L US . BM240. 005, R1
RETURN

PUTC PSET : RETURN
PIITC 0 . E S>.B2. PSET ' RETIUJRN
PUTC . X < e n 3. PSET : RETURN
PUTEC J. I >—% J+15.. B84 .PSET: RETURN
PoTe 1013 0NiSIITIS 3 B3 REET RETURN

This module DRAWSs the display on which the game is played.

Commentary

Lines 7040—7090: These loops work through the array A, using the values
contained in it to call up the one line sub-routines at line 7140 —7180.
Line 7100: This draws the marks which indicate the height of the pedestals

on the right of the screen.

Line 7110: The remaining quoits aredisplayed visually at the bottom of the
screen.

Testing Module 7.3.4
Temporarily removing line 1060 and line 6140 should result in a program
which will create the display described, before giving an error RETURN
WITHOUT GOSUB.

MODULE 7.3.5
1900 RE
1®1@ REM MAIN PROGRAMME
1920 RE
19030 CLS:PRINT @ Z2%Xx22+12. "aucit=
1940 PRINT: INPUT “DO pA T e s INSTRUCTIO
NS <Y N> " Qe IF Qmetyn HEN GOSUB Soeo
1950 CLS:GOTO 2000
1050 GOSUR &
1070 FOR H=300 TO 100© STEP ~10:FOR G=1 T
o =z
1980 GCOSUB 7000 GOSUB A0
1958 IF INKEYS="" THEN GOTO 1050
1100 CLS NEXT G.H
1110 CLS ' PRINT ® 2%32+12. "QUOITS"
1120 PRINT 'PRINT "¥Y0OUR SCORE WAS " :SCORE
 END

The main loop of the program, which allocates work among the other
modules.

MODULE 7.3.6

RE
2910 REM DIRECTION

RE
2930 PMODE 4 :SCREEN1.1

155

2040 LET S1=11929:LET S2=9&

30T LET =1 FOP Y=17= TO 17 =TEE -1
200 PSET <>
Teva IF '!NI(EY,(»-- fTHEN GOTO asas
208 HEXT ¥

1IF INI(EY.(>" vTHEN GATO Saans
FOR vnxs TO 174
THEN COTO am@s

16 STEP —1

THEN GOTO <aaes

QUONAULIN=
Q000003300

FiE T

This module draws the direction indicator line around the screen. Stopping
it supplies two co-ordinates, X and Y to the next module.

MODULE 7.3.7

4000 REM
4919 REM ANGLE AND VELOCITY
4020 REP
4930 FOR_ I=1 TO SO0.NET I

4240 H1=X—_S1:V1=vy-—S2

40S0 IF ABS <Y1 5>=ABS<H1 > THEN LET V2=SG
NCV1> ' LET H2=ABS<H1-V1 >SGNCH1 >

4050 IF ABSCHI1 >>ABSCV1 > THEN LET HZ2mSGNC
H15>:LET V2=ABSCV1-H1 >%xSGNCV1 >

4070 FOR V=8 TO =]
40E0 PSET <V.3>'IF INKEY®S<>''" THEN GOTO
soo0o

4990 NEXT Vv
41900 RETURN

Based on the co-ordinates at which the direction indicator stopped, this
module calculates a direction for the throw from the centre of the grid.

Commentary

Lines 4050—4060: Thesetwo lines serve to ensure that the path of the quoit,
when it is plotted on the grid, will be a continuous line rather than spaced
pixels. It does this by determining which is the greater, thehorizontal or the
vertical component of the direction and then using that component as the
basis for the line, with adjustments up, down, left or right for the other
component.

Lines 4070—4090: This draws the strength indicator.

MODULE 7.3.8

S©19 REM PLOT COURSE
RE

2832 LET T=<235—v>-1000
=040 FOR I=1 TO

sSoSe LET K—INT(S]*INT(IXHZ25>5>:LET ¥Y=INTCS
Z2ATTC IRV2 DD

SO0 IF ¥<@ OR ¥>151 THEN RETURH

5972 IF _PPOINTCM.¥Y><>0 THEN PRESETC>.Y>
ELSE PSETC>.

5656 moshe aooe

LET HR=H-S*%< T%XI>~2:1IF H3<=m0 THEN RE

S100 IF 1=z AND Y1=Y2 AND X1<>99535 AND
¥1<>999 THEN IF H3<ABRSCAC Y1, X1 >>%20 AND

156

TS THEN LET SCORE=SCORE+GS—ACY 1.5
ACY1. X1 d3aAd Y1 X1 >K—

1< >999 AND ¥Y1<>399 THEN IF HR<A
231 55%2a THEN RETURN

T Y2=vw1 LET X2m=¥1

HA-2c=191 THEN LINEC2D2.a>—C252.

A= ANDU=D

- PSET
*T I-RETURN

Thismodulecalculates the track of the quoit across the grid and the height
of the quoit as it falls.

Commentary

Line 5070: The pixel over which the quoit is currently passing is reversed,
no matter whether set or not.

Line 5090: This formula describes a falling trajectory.

Line 5100: This line ensures that if the quoit enters a square for which it
does not have sufficient height, it is not registered as a landing, nor if the
square has been landed on before — only if it is a fresh square and it is
entered from above is a landing registered.

Line 5130: This line draws the height indicator — a downward line, on the
right of the screen.
MODULE 7.3.9

faeea REM
8201a REM LANDING?

eoz20 RE A
BATO LET H1=INTCCX—31>-16>

2o4a LET Yl-!NT((Y*ZB)/lS)

eesa IF *1>19 OR 1< THEN LET X1m=S9995
s@60 IF Yi1>A 0ORrR Y:<n HEN LET Y1=933

eare RETURN

This module transforms the pixel co-ordinates of the quoit into
co-ordinates on the 11*9 grid. If the quoit has passed beyond the grid the
value of the relevant co-ordinate is set to 999 as an indicator for the
previous module.

157

POSTWORD

IThopethatithasnot escapedyournotice, nowthatyouhavecometothe
end of this book, thatyouarethepossessor of a library of programs. True,
it is not the most extensive library in the history of computing, but it
containsthetoolsto tackle a variety of tasks if you arepreparedto adapt
the programs to your own specific needs. In addition the collection as a
whole may have given you a glimpse of what the Dragon is waiting to
achieve with and for you.

Like the simplest camera, the meanest computer is far better than its
programmers, always capable of more than has yet been done with it. The
Dragon is a highly powered tool and it waits only for you to take programs
like these and make them your own, cannibalise them for spares, discard
them on the path to better things.

In other words the Dragon waits only to be put to work.

158

The Working Dragon 32 is based on a
collection of solid, sophisticated programs
in areas such as data storage, finance,
graphics, household management,
education and games of skill.

Some of the more advanced programs
include a Text Editor, which can perform
many of the functions of a word processor,
and a Music Editor, which will let you write
long music programs without endlessly
repeating similar routines.

Each of the programs is explained in detail,
line by line. And each of the programs is
built up out of general purpose subroutines
and modules which, once understood, can
form the basis of any other programs you
need to write.

Advanced programming skills spring out of
the discussion explaining each subroutine.
The collection also leaves you with a wide
range of practical applications programs
which might otherwise only be available on
cassette.

The author, David Lawrence, has also
written The Working Spectrum and is a
regular contributor to Popular Computing
Weekly.

Sunshine Books
£5.95 net

ISBN 0946408 01 7

s)oog aulysunsg aouaimeT] pineq g uobeaq Bunjopm ayL

	1
	lc-p001
	lc-p002
	lc-p003
	lc-p005
	lc-p006
	lc-p007
	lc-p008
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p066
	lc-p067
	lc-p068
	lc-p069
	lc-p070
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p084
	lc-p085
	lc-p086
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p096
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p108
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	lc-p137
	lc-p138
	lc-p139
	lc-p140
	lc-p141
	lc-p142
	lc-p143
	lc-p144
	lc-p145
	lc-p146
	lc-p147
	lc-p148
	lc-p149
	lc-p150
	lc-p151
	lc-p152
	lc-p153
	lc-p154
	lc-p155
	lc-p156
	lc-p157
	lc-p158
	z

